

Solutia Inc.

575 Maryville Centre Drive St. Louis, Missouri 63141

P.O. Box 66760 St. Louis, Missouri 63166-6760 *Tel* 314-674-1000

January 8, 2001

Mr. Michael McAteer (1 copy)
U. S. EPA - Region 5
77 West Jackson Boulevard (SR-6J)
Chicago, Illinois 60604-3590

Re: Sauget Sites Area I January 21, 1999 Administrative Order by Consent June 25, 1999 Support Sampling Plan as approved by letter dated September 9, 1999

• Ecological Risk Assessment Submittal

Dear Mr. McAteer,

Pursuant to the Sauget Sites Area I January 21, 1999 Administrative Order by Consent and the June 25, 1999 Support Sampling Plan as approved by letter dated September 9, 1999, Solutia hereby submits the **Ecological Risk Assessment**.

The Ecological Risk Assessment is pursuant to Task 4, "Engineering Evaluation / Cost Analysis Report (EE/CA)", "EECA Outline", Paragraph 2.6 "Ecological Risk Assessment" of the EECA/RIFS SOW, and Task 5, "RIFS (Groundwater)", Paragraph 2 "Risk Assessment for Groundwater" of the EECA/RIFS SOW.

The information from this Ecological Risk Assessment will be used in the EE/CA - RI/FS Reports.

Sincerely,

Manager, Remedial Projects

Solutia Inc.

D. M. Ligh

cc: (w/attachments)

cc: (w/o attachments)

Candy Morin - Illinois Environmental Protection Agency Kevin de la Bruere - U.S. Fish and Wildlife Service Mike Henry - Illinois Department of Natural Resources Tim Gouger (3 copies) - U.S. Army Corps of Engineers Thomas Martin - U.S. EPA

Menzie-Cura & Associates, Inc.
One Courthouse Lane
Suite 2
Chelmsford, Massachusetts 01824
Telephone (978) 453-4300
Fax (978) 453-7260

MEMORANDUM

Date: January 8, 2001

File: 648D

To: Michael McAteer, USEPA - Region 5

From: Katherine Fogarty Kath

Subject: Sauget Area I Ecological Risk Assessment

Report Submittal

Cc: Candy Morin - IEPA; Kevin de la Bruere -

USFWS; Mike Henry – IDNR; Tim Gouger (3 copies) – USACOE; Thomas Martin –

USEPA - w/o attachments

This memorandum serves as a Letter of Transmittal for:

One copy of the Sauget Sites Area I Ecological Risk Assessment report;

One copy of the cover letter from D.M. Light of Solutia, Inc. to Michael McAteer of USEPA - Region 5 dated January 8, 2001.

ECOLOGICAL RISK ASSESSMENT FOR SAUGET AREA I

SAUGET ST. CLAIR COUNTY, ILLINOIS

January 8, 2001

Prepared for:

Solutia, Inc. 10300 Olive Boulevard St. Louis, MO 63141

Prepared by:

Menzie-Cura & Associates, Inc. One Courthouse Lane, Suite Two Chelmsford, MA 01824

Project Manager

Project Reviewer

Principal

TABLE OF CONTENTS:

ACRO	ACRONYMS		
1.0	INTRODUCTION	1	
1.1	REGULATORY GUIDANCE	2	
2.0	BACKGROUND	3	
2.1	DEAD CREEK AND THE BORROW PIT LAKE	3	
2.2	REFERENCE AREAS		
3.0	PROBLEM FORMULATION	5	
3.1	CONCEPTUAL SITE MODEL		
	1.1 Environmental Setting and Contaminants Known or Suspected to Exist at The Site		
	1.2 Contaminant Fate and Transport Mechanisms		
	.1.3 Mechanisms of Ecotoxicity and Likely Categories of Potentially Affected Receptors		
3.2	.1.4 Complete Exposure Pathways IDENTIFICATION OF RECEPTORS		
4.0	SELECTION OF ASSESSMENT ENDPOINTS AND MEASURES OF EFFECTS		
4.1	ASSESSMENT ENDPOINTS	13	
4.2	MEASURES OF EFFECTS		
5.0	EXPOSURE ASSESSMENT	15	
5.1	DATA USED IN ECOLOGICAL RISK ASSESSMENT		
5.	1.1 Sampling Locations	15	
	1.2 Calculation of PCB and dioxin/furan concentrations 1.3 COPC Selection Process		
6.0	ECOLOGICAL EFFECTS ASSESSMENT	19	
6.1	GENERAL APPROACH FOR ASSESSMENT OF ECOLOGICAL EFFECTS	19	
7.0	RISK CHARACTERIZATION	20	
7.1	ASSESSMENT ENDPOINT 1; SUSTAINABILITY OF WARM WATER FISH	20	
	1.1 Measure of effect 1a: body burdens of COPCs in selected fish species	20	
<i>7</i> .	1.2 Measure of effect 1b: COPC concentrations in surface water as compared to applicable water quality criteria for protection of fish and wildlife.	22	
7.	1.3 Measure of effect 1c: Sustainability of benthic macroinvertebrate communities that comprise a p	rey	
	base	23	
	7.1.3.1 Sediment Chemical Measurements 7.1.3.2 Field assessment of benthic macroinvertebrate community	23 24	
	7.1.3.3 Sediment toxicity testing		
7.2	ASSESSMENT ENDPOINT 2; SURVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF		
	AQUATIC WILDLIFE AS REPRESENTED BY THE MALLARD DUCK, GREAT BLUE HERON, MUSKRAT, AND RIVER OTTER	28	
7.	2.1 Measure of effect 2a: Wildlife species composition and habitat use		
	2.2 Measure of effect 2b: Concentrations of COPCs in aquatic and marsh plants		
	2.3 Measure of effect 2c: Concentration of COPCs in surface waters		
	2.4 Measure of effect 2d: Concentration of COPCs in fish		
	2.5 Measure of effect 2e: Concentration of COPCs in benthic macroinvertebrates	35	
7.3	ASSESSMENT ENDPOINT 3: SURVIVAL, GROWTH, AND REPRODUCTION OF INDIVIDUALS WITHIN THE		

	LOCAL BALD EAGLE POPULATION THAT MAY OVERWINTER NEAR THE SITE	36
7	3.1 Measure of effect 3a: Concentration of COPCs in fish for use in evaluating exposure via the food	
	chain	36
7.4		
	TERRESTRIAL WILDLIFE ALONG THE BANKS AND FLOODPLAIN OF DEAD CREEK.	
7	4.4.1 Measure of effect 4a: COPC concentrations in soil samples from the creek bank and floodplain a	5
	compared to applicable soil screening levels for protection of wildlife, plants, and soil dwelling	
	invertebrates	37
8.0	WEIGHT OF EVIDENCE DISCUSSION OF ECOLOGICAL RISK	40
8.1	SUSTAINABILITY (SURVIVAL, GROWTH, AND REPRODUCTION) OF WARM WATER FISH SPECIES TYPICAL	. OF
	THOSE FOUND IN SIMILAR HABITATS (INCORPORATES THE ASSESSMENT OF BENTHIC	
	MACROINVERTEBRATES)	40
8.2	SURVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF AQUATIC WILDLIFE REPRESENT	ED.
	BY MALLARD DUCK, GREAT BLUE HERON, MUSKRAT, AND RIVER OTTER (INCORPORATES THE	
	ASSESSMENT OF BENTHIC MACROINVERTEBRATES INCLUDING SHRIMP AND CLAMS)	
8.3	SURVIVAL, GROWTH, AND REPRODUCTION OF INDIVIDUALS WITHIN THE LOCAL BALD EAGLE POPULAT	
	THAT MAY OVERWINTER NEAR THE SITE	
8.4	SURVIVAL, GROWTH, AND REPRODUCTION OF LOCAL POPULATIONS OF TERRESTRIAL WILDLIFE ALONG	
	THE BANKS AND FLOODPLAIN OF DEAD CREEK	. 42
9.0	DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS	43
9.1	EXPOSURE ASSESSMENT UNCERTAINTY	43
9.2	FIELD OBSERVATION UNCERTAINTY	
9.3	FOOD CHAIN MODELING UNCERTAINTY	. 43
10.0	SUMMARY AND CONCLUSIONS	. 45
11 0	REFERENCES	47

TABLES	
Table 4-1	Assessment Endpoints and Associated Measures of Effect
Table 5-1	Comparison of Maximum Surface Water Concentrations to Standards and Guidelines
Table 5-2	Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Table 5-3	Selection of COPCs for Ecological Risk Assessment
Table 7-1	Comparison of Largemouth Bass Concentrations to Toxicity Benchmarks
Table 7-2	Comparison of Brown Bullhead Concentrations to Toxicity Benchmarks
Table 7-3	Comparison of Forage Fish Concentrations to Toxicity Benchmarks
Table 7-4	Whole Body Toxicity Values for Fish
Table 7-5	Comparison of Dead Creek Segment F Surface Water Concentrations to Criteria
Table 7-6	Comparison of Borrow Pit Surface Water Concentrations to Criteria
Table 7-7	Comparison of Sediment Concentrations in Dead Creek Section F to Sediment Quality Guidelines
Table 7-8	Comparison of Borrow Pit Sediment Concentrations to Sediment Quality Guidelines
Table 7-9	Number of Taxa, Number of Organisms, and Three Dominant Taxa in Dead Creek Section F and Borrow Pit Samples
Table 7-10	Diversity Indices for Dead Creek Section F, the Borrow Pit Lake, and Reference Areas
Table 7-11	Community Composition of Six Major Taxonomic Groups
Table 7-12	Hilsenhoff's Biotic Index of Organic Stream Pollution
Table 7-13	Hyalella azteca Acute Toxicity Results

Table 7-14	Hyalella azteca 42-Day Chronic Survival, Growth, and Reproduction Results
Table 7-15	Acute Sediment Toxicity Testing Results with Chironomus tentans
Table 7-16	Results of <i>Chironomus tentans</i> Chronic Survival, Growth, Emergence, and Reproduction Toxicity Tests
Table 7-17	List of Fish and Wildlife Species Observed on and near Dead Creek and the Borrow Pit Lake
Table 7-18	Comparison of Plant Concentrations between Dead Creek Section F and the Reference Areas
Table 7-19	Results of Food Chain Modeling
Table 7-20	Comparison of Surface Water Concentrations in Dead Creek Section F to Wildlife Benchmarks
Table 7-21	Comparison of Surface Water Concentrations in the Borrow Pit Lake to Wildlife Benchmarks
Table 7-22	Comparison of Shrimp Concentrations between the Borrow Pit Lake and Reference Areas
Table 7-23	Comparison of Clam Concentrations between the Borrow Pit Lake and Reference Areas
Table 7-24	Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks
Table 7-25	Surface Soil Locations that Exceed Ecological Benchmarks
Table 8-1	Weight of Evidence Evaluation of Ecological Risk

FIGURES

Figure 1-1 Site Locus and Sampling Locations

Figure 2-1 Monroe County Reference Areas

Figure 3-1 Ecological Conceptual Model for Dead Creek

Figure 5-1 Surface Water Sample Locations

Figure 5-2 Sediment Sample Locations

Figure 5-3 Soil Sampling Locations

Figure 7-1 Summary of Functional Feeding Group Abundance

APPENDICES

Appendix E

Appendix A	Ecological Risk Assessment Work Plan for Sauget Area I
Appendix B	Photographs
Appendix C	Summary Statistics for Data Used in Ecological Risk Assessment
Appendix D	Benthic Community Analysis Results

Summary of Sediment Toxicity Testing Results

Appendix F Food Chain Model Information and Results

ACRONYMS

AhR Aryl Hydrocarbon Receptor
AWQC Ambient Water Quality Criteria
COPC Compounds of Potential Concern

DAS Developed Area Soil

DDE Dichlorodiphenyl dichloroythelene, a breakdown product of DDT

DDT Dichlorodiphenyl trichloroethane, an insecticide EMPC Estimated Maximum Potential Concentration

FFG Functional Feeding Groups

IEPA Illinois Environmental Protection Agency
J Data Qualifier, Indicates Estimated Value

LEL Lowest Effect Levels

LOAEL Lowest Observed Adverse Effect Level

M Data qualifier; indicates estimated maximum potential concentrations for dioxins

MCPA 2-Methyl-4-chlorophenoxyacetic acid, an herbicide

MCPP 2-(2-Methyl-4-chlorophexoxy) proprionic acid, an herbicide

NOAEL No Observed Adverse Effect Level PAH Polynuclear Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PEC Probable Effects Concentrations

QAPP/FSP Quality Assurance Project Plan/Field-Sampling Plan

RPM Remediation Project Manager

SEL Severe Effect Levels

SVOC Semi-volatile Organic Compounds
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TEC Threshold Effect Concentrations

TEF Toxic Equivalency Factor
TEQ Toxic Equivalency Quotient
TOC Total Organic Carbon
TRV Toxicity Reference Value

U Data Qualifier; indicates not detected above given detection limit

UAS Undeveloped Area Soil

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey VOC Volatile Organic Compounds

1.0 INTRODUCTION

This baseline ecological risk assessment for Sauget Area I in Sauget and Cahokia, Illinois, addresses Dead Creek surface water and sediment and surficial floodplain soils. Figure 1-1 shows the site locus. The risk assessment follows the work plan for the project (Ecological Risk Assessment Work Plan for Sauget Area I, Sauget, St. Clair County, Illinois, Prepared for Solutia, Inc., St. Louis, MO, Menzie-Cura & Associates, Inc., August 12, 1999; Appendix A) and notes where deviations from the work plan exist due to unanticipated differences in site conditions.

With the agreement of the United States Environmental Protection Agency (USEPA) Remediation Project Manager (RPM) Michael McAteer, the ecological risk assessment is restricted to a portion of Dead Creek Segment F and the Borrow Pit Lake. Creek Segments B through the upper portion of F are subject to a Unilateral Administrative Order issued by the USEPA on May 31, 2000 to Monsanto Company and Solutia Inc. (Docket No. V-W-99-C-554) pursuant to section 106(a) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 as amended, 42 U.S.C. Section 9606(a). The Order requires the following response activities at Sauget Area 1 Creek Segments B and Site M and Creek Segments C, D, E, and F upstream of the Terminal Railroad Association embankment, which are located in Sauget and Cahokia, Illinois (Figure 1-1):

- Preparation of a Time Critical Removal Action Work Plan;
- Implementation of the Removal Action in accordance with the Work Plan to mitigate the threats posed by presence of contamination in Dead Creek sediments and certain adjacent soils and their potential migration via overflow and flood waters from the Site;
- Removal of materials from CS-B (creek sediments, creek bed soils and flood plain soils); CS-C, D, and E (non-native creek sediments only); and Site M (pond sediments and pond bottom soils) in Sauget Area 1, while minimizing adverse impacts to area wetlands and habitat;
- Proper handling, dewatering, treatment and placement of such materials in the on-site Containment Cell:
- A plan for management of Dead Creek storm water during the removal action;
- Sampling and analysis of areas where materials has been removed, for the purpose of defining remaining contamination;

- Placement of membrane liner material over CS-B and in all other excavated areas where, based on post-removal sample results, such liner is determined to be necessary; and
- Design of a containment cell which will provide adequate protection to human health and the environment.

The Order requires Solutia to conduct these removal activities to abate a potential imminent and substantial endangerment to the public health, welfare or the environment that may be presented by the actual or threatened release of hazardous substances at or from the site.

1.1 Regulatory Guidance

The assessment follows current USEPA guidance in:

Ecological Risk Assessment Guidance For Superfund: Process For Designing and Conducting Ecological Risk Assessments (USEPA, 1997); and

Guidelines for Ecological Risk Assessment (EPA/630/R-95/002F, April 1998).

Previously, the USEPA conducted a Preliminary Ecological Assessment of Dead Creek Segment F, which essentially provides the screening analyses required in Steps 1 and 2 of the guidance (USEPA, 1997).

2.0 BACKGROUND

This section provides a description of Dead Creek, the Borrow Pit Lake, and reference areas.

2.1 Dead Creek and the Borrow Pit Lake

Dead Creek begins immediately south of Queeny Avenue in an industrial area of Sauget, Illinois and flows slowly south through residential neighborhoods (Figure 1-1). Along most of its length, the stream is bordered by a dense, narrow band of riparian trees and shrubs. Homeowners have cleared to the creek's edge and have established lawn along several sections. Creek Section B runs from Queeny Avenue south to Judith Lane, Section C from Judith Lane to Cahokia Street, Section D from Cahokia Street to Jerome Street, and Section E from Jerome Street to the intersection of Routes 3 and 157. Section F begins at the intersection with Route 3, crosses the intersection, passes through a culvert at railroad tracks, and continues to the southwest toward the Borrow Pit Lake. As discussed in Section 1.0, this ecological risk assessment addresses Dead Creek Section F from the railroad culvert south and the Borrow Pit Lake. Photographs of this area showing the predominant habitat types are in Appendix B.

West of Route 3, the creek flows south and west through the American Bottoms floodplain. This area contains active and abandoned agricultural land divided by levees and railroad right-of-ways. After Dead Creek flows under the railroad right-of-way, it is joined by a stream draining land from the north.

The Borrow Pit Lake is a borrow pond that was excavated during the construction of the local levee system. The United States Geological Survey (USGS) map of the area (Cahokia) indicates that the pond was dug to its current shape sometime after 1954. The pond is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees and emergent wetland vegetation. During time of high water, Dead Creek drains the pond through a pump station under a levee and flows into a ditched section of Prairie du Pont Creek. The channel flows northwest to Arsenal Island on the Mississippi River.

During the site reconnaissance and sampling in September, October, and November of 1999, water levels were extremely low in Dead Creek and the Borrow Pit Lake. Many areas of these water bodies were dry with exposed mud. Fish and other aquatic species (e.g., frogs) were concentrated in shallow puddles.

Section 7.2.1 provides additional detailed description of the habitat of Dead Creek and the Borrow Pit Lake.

2.2 Reference Areas

Reference areas for ecological risk assessment were selected during the ecological site reconnaissance and during the main sampling event. Details of the selection are included in the field report (Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia, Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., September 2000).

The following criteria were applied for the selection of reference areas:

- a) physical similarity to Dead Creek or the Borrow Pit Lake
- b) location away from direct influence of industrial discharges, including major highways.

The reconnaissance survey was carried out over a three-day period in September 1999. The selection of reference sampling stations was discussed with Mr. Michael Ondrachek of Weston, who served as representative for the USEPA.

Reference area 1 was a section of Old Prairie du Pont Creek near the town of East Carondelet, approximately 3 miles southwest of the end of Dead Creek in the Borrow Pit Lake. This section of Old Prairie du Pont Creek is a broad shallow water body with a mud substrate similar to the Borrow Pit Lake. It is distant from any influence from the site or other industrial areas, but is similar to the Borrow Pit Lake in that it is near agricultural land. Two sampling locations were selected in reference area 1. These are depicted on Figure 1-1; photographs are in Appendix B.

Two bodies of water in Monroe County, collectively referred to as reference area 2, were selected during the main sampling event. These water bodies were approximately 20 miles south of Dead Creek. It was not possible to obtain permission to sample the second reference area selected during the reconnaissance survey. These two water bodies contained one sampling station each. Reference area 2-1 was in Long Slash Creek north of the culvert where Merrimac Road crosses the creek. This section was similar to Dead Creek sectors B through E in that it was shallow and muddy. Reference area 2-2 was a flooded borrow pit north of Fountain Creek and was similar in depth, hydrology, and surrounding land use to the Borrow Pit Lake. These reference areas are shown on Figure 2-1; photographs are in Appendix B.

3.0 PROBLEM FORMULATION

The problem formulation phase of an ecological risk assessment develops the nature of the problem and presents a plan for analyzing data and characterizing risk. The problem formulation section of this assessment defines the assessment and presents a conceptual model that describes key relationships between potential stressors and assessment endpoints. Assessment endpoints are expressions of the environmental value to be protected at a site that are selected by the consensus of the regulators, the regulated community, and state or local concerns. The problem formulation for this risk assessment was presented in the project work plan (Appendix A).

3.1 Conceptual Site Model

The foundation of an ecological risk assessment is the conceptual site model. According to USEPA guidance, the conceptual model addresses:

environmental setting and contaminants known or suspected to exist at the site; contaminant fate and transport mechanisms; mechanisms of ecotoxicity and likely categories of potentially affected receptors; complete exposure pathways.

Figure 3-1 provides a diagram of the Conceptual Site Model. It illustrates transport of compounds from the site media through the potentially affected habitats to important ecological receptors.

3.1.1 Environmental Setting and Contaminants Known or Suspected to Exist at The Site

The environmental setting is the aquatic environment of a shallow stream, broader semi-impounded basin, and floodplain as described in Section 2.1 of this report. The compounds of potential concern (COPCs) are selected in Section 5 of this report and include herbicides, insecticides, PCBs, metals, polynuclear aromatic hydrocarbons (PAHs), and dioxins.

3.1.2 Contaminant Fate and Transport Mechanisms

In an aquatic system such as Dead Creek, various physical, chemical, and biological transport mechanisms can affect the fate of COPCs. The COPCs listed adsorb onto particulate matter to varying degrees. Therefore, the conceptual model addresses mechanisms affecting particle distribution in aquatic systems. These include:

particulate runoff from the watershed,

deposition in areas of sluggishly flowing waters, erosion in faster moving stream segments, and resuspension of particulates from the stream bed and over the floodplain.

Chemicals with lower particle affinities may be more subject to dissolution in and transport by surface water. Increasing solubility generally correlates with increasing bioavailability. In particular, metals may be subject to transport in soluble form, depending on their valence states.

The major biological mechanisms affecting fate and transport are:

biological uptake directly from environmental media; bioaccumulation through ingestion of prey or media; and biomagnification through the food chain.

Several of the COPCs are subject to one or all of these biological fate and transport mechanisms.

3.1.3 Mechanisms of Ecotoxicity and Likely Categories of Potentially Affected Receptors

The COPCs may affect the survival and reproductive capacity of benthic biota, fish, invertebrates, vascular plants, and wildlife. The categories of likely potentially affected receptors for an aquatic system such as the Dead Creek and the Borrow Pit include:

The benthic macroinvertebrate community;

warm water fish (e.g., largemouth bass);

waterfowl (e.g., mallard) that feed on plants and macroinvertebrates (including shrimp); piscivorous birds (e.g., great blue heron, bald eagle);

aquatic mammals (e.g., muskrat) that feed on plants and macroinvertebrates (including freshwater clams);

aquatic mammals (e.g., river otter) that feed on fish and macroinvertebrates (including freshwater clams).

Section 3.2 provides more detail on these receptors.

The possibility for exposure of terrestrial plants and wildlife to COPCs in soil or through soil-based food chains was also considered in the evaluation.

3.1.4 Complete Exposure Pathways

The USEPA guidance indicates that the risk assessment must identify complete exposure pathways before a quantitative evaluation of toxicity to allow the assessment to focus on COPCs that can reach ecological receptors. The likely complete exposure pathways in Dead Creek and the Borrow Pit Lake are:

Sediment to benthic invertebrates via direct contact and ingestion;

Sediment and surface water to aquatic plants via uptake;

Surface water to invertebrates and fish though direct contact and ingestion;

Benthic biota (including freshwater shrimp and clams) to higher order predators (e.g., fish) through the food chain;

Fish and macroinvertebrates (clams and shrimp) to piscivorous fish, mammals, or birds via ingestion;

Soil to soil invertebrates along the creek banks or floodplain via direct contact and/or ingestion;

Soil to plants or wildlife along the creek banks or floodplain via uptake through roots or ingestion.

3.2 Identification of Receptors

This subsection of the ecological risk assessment identifies the receptors (receptor species) and provides the rationale for their selection as representative of the species that occur or are likely to occur near the site. This subsection also provides an ecological characterization of each receptor for use in developing the exposure assessment.

The selected receptors represent those types of organisms most likely to encounter the contaminants of concern at the site. They include a reasonable (although not comprehensive) cross-section of the major functional and structural components of the ecosystem under study based on:

Relative abundance and ecological importance within the selected habitats;

Availability and quality of applicable toxicological literature;

Relative sensitivity to the contaminants of concern;

Trophic status;

Relative mobility and local feeding ranges;

Ability to bioaccumulate contaminants of concern.

The selected species represent different feeding guilds. A guild is a group of animals within a habitat that use resources in the same way. Coexisting members of guilds are similar in terms of their habitat requirements, dietary habits, and functional relationships with other species in the habitat. Guilds may be organized into potential receptor groups. The use of the guild approach allows focused integration of many variables related to potential exposure. These variables include characteristics of COPCs (toxicity, bioaccumulation, and mode of action) and characteristics of potential receptors (habitat, range and feeding requirements, and relationships between species). This approach evaluates potential exposures by considering the major feeding guilds found in a habitat. It is assumed that evaluation of the potential effects of COPCs on the representative species will be indicative of the potential effects of COPCs to individual member classes of organisms within each feeding guild.

The selected species represent the ecological community and its sensitivity to the contaminants of concern and were arrived at based, in part, on knowledge of the area and on discussions with the USEPA and other government agencies. The ecological receptors selected for evaluation include: benthic invertebrates, shellfish, local fin fish, great blue heron, mallard, bald eagle, muskrat, and river otter.

Benthic invertebrates

Benthic invertebrates are potential receptor species in Dead Creek and the Borrow Pit Lake because they:

Have the greatest exposure to sediments;

Provide food for bottom-feeding fish species;

Are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions.

Warm Water Fish Species

Warm water resident fish species were selected to reflect local sediment and water quality conditions. The typical warm water fish species such as centrachids (sunfish, bass) and bottom feeding fish such as bullheads are abundant local residents with a limited foraging range. These organisms are potential receptor species representing local fish because they are:

Resident in the Borrow Pit Lake;

Exposed to sediments as well as surface water;

Represent fish and higher order predators feeding on smaller fish and invertebrates.

Fish were abundant in the Borrow Pit Lake, but were not observed in Dead Creek Section F. Therefore, these receptors were evaluated in the Borrow Pit Lake only.

Aquatic Birds

We have selected great blue heron, mallard duck, and bald eagle to represent aquatic birds feeding in Dead Creek and the Borrow Pit Lake for at least a portion of the time.

Great Blue Heron (Ardea herodias)

The great blue heron inhabits salt and freshwater environments, typically shallow waters and shores of lakes, flooded gravel pits, marshes and oceans. In marsh environments, the great blue heron is an opportunistic feeder; they prefer fish, but they will also eat amphibians, reptiles, crustaceans, insects, birds, and mammals. The diet varies but may include up to 100% fish. Great blue heron tend to forage near nesting sites (USEPA, 1993).

These organisms are potential receptor species because they:

Consume fish;

Have a foraging range about equal to the downstream area of the Dead Creek sectors;

Are a higher trophic level predator in the creek and Mississippi River.

Great blue heron, therefore, represent piscivorous birds.

Mallard (Anas platyrhynchos)

The mallard is the most common freshwater duck of the United States, found on lakes, rivers, ponds, etc. It is a dabbling duck, and feeds (usually in shallow water) by "tipping up" and eating food off the bottom of the water body. Primarily, it consumes aquatic plants and seeds, but it will also eat aquatic insects, other aquatic invertebrates, snails and other molluscs, tadpoles, fishes, and fish eggs. Ducklings and breeding females consume mostly aquatic invertebrates. The mallard's home range is variable, but an approximate range is 500 hectares. It prefers to nest on ground sheltered by dense grass-like vegetation, near the water.

Mallards are a potential receptor species because they:

Consume both aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level duck in the creek and in the Mississippi River.

Mallards, therefore, represent waterfowl.

Bald Eagle (Haliaeetus leucocephalus)

Bald eagles are generally found in coastal areas, near lakes or rivers. Their preferred breeding sites are in large trees near open water. They are usually found in areas with minimal human activity. Bald eagles are federally-listed endangered species that overwinter in the Mississippi River valley north of Dead Creek and the Borrow Pit Lake. A pair of bald eagles was observed attempting to nest on the southern tip of Arsenal Island in 1993 and 1994. The nest has since blown down and has not been reconstructed (Collins, 2001).

We sow then in late 99

Bald eagles, although primarily carrion feeders, are opportunistic and will eat whatever is plentiful including fish, birds, and mammals. Foraging areas vary according to season and location. The USEPA (1993) reports a foraging length of 2 to 4.5 miles along a river.

These organisms are potential receptor species because they:

Consume fish;

Are a higher trophic level predator;

Are sensitive to contaminants that biomagnify in the food chain.

The bald eagle, therefore, represents predatory birds.

Aquatic Mammals

This assessment assumes that river otter and muskrat represent aquatic mammals in Dead Creek and the Borrow Pit Lake.

River Otter (Lutra canadensis)

The river otter can be found in primarily freshwater but also saltwater environments, but seems to prefer flowing-water habitats rather than still water. It has been found in lakes, marshes, streams, and seashores. It consumes largely fish, but is opportunistic and will

consume aquatic invertebrates (crabs, crayfish, etc.), aquatic insects, amphibians, birds (e.g. ducks), small or young mammals, and turtles. They may also sift through sediment for food. The otter dens in banks, in hollow logs, or similar burrow-like places. Home range varies depending on habitat and sex, but an approximate measure is 300 hectares.

River otters are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live in or near the water;

Are a higher trophic level predator in the creek and in the Mississippi River.

River otters, therefore, represent higher trophic level aquatic mammal.

Muskrat (Ondatra zibethicus)

The muskrat is a semiaquatic large rodent which lives near freshwater and brackish aquatic environments: marshes, ponds, creeks, lakes, etc. It feeds largely on aquatic plants, but depending on location and time of year may also consume aquatic invertebrates (crayfish, crabs, etc.), small amphibians, turtles, fish, molluscs, and even young birds. The muskrat lives quite close to the water, either on the bank of the water body or in a lodge constructed in the water body. Its home range is small (0.17 hectares on average) and one study found that muskrats remain within 15 meters of their primary dwellings 50 percent of the time.

Muskrats are a potential receptor species because they:

Consume aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level omnivore in the creek and Borrow Pit Lake.

Muskrats, therefore, represent lower trophic level aquatic mammals.

Soil invertebrates

Soil invertebrates are potential receptor species in Dead Creek banks and floodplain because they:

Have the greatest exposure to soil;

Provide food for birds and mammals;

Are relatively immobile (sessile) in habit, and therefore their general health and Condition reflects local conditions.

4.0 SELECTION OF ASSESSMENT ENDPOINTS AND MEASURES OF EFFECTS

4.1 Assessment Endpoints

Assessment endpoints are expressions of the environmental value to be protected at a site. Assessment endpoints are often not directly measurable. Therefore, the assessment employs measures of effects. These are biological or measurable ecological characteristics which reflect the assessment endpoint (USEPA, 1997). Where the assessment endpoint is not directly measurable, the use of a measure of effect may result in some uncertainty in the risk characterization. Ultimately, the selection of assessment endpoints requires the consensus of the regulators, the regulated community, and state or local concerns. The following assessment endpoints were selected for this ecological risk assessment in the work plan (Appendix A):

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates). (Although this endpoint included crayfish in the work plan, this species was not observed in Dead Creek Section F or the Borrow Pit Lake. The field report (OBG, Inc., 2000) provides the details of these observations).

Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams).

Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site.

Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek.

The assessment will evaluate risk relative to these assessment endpoints in Creek Section F and the Borrow Pit Lake.

4.2 Measures of Effects

The measures of effect direct data collection needs for the baseline ecological risk assessment. They provide the actual measurements for estimating risk. A weight-of-evidence approach (Menzie et al., 1996) weighs each of the measures of effects by considering:

Strength of association between the measure of effects and assessment endpoint;

Data quality; and

Study design and execution.

Strength of association refers to how well a measure of effects represents an assessment endpoint. The greater the strength of association between the measurement and assessment endpoint, the greater the weight given to that measure of effect in the risk analysis.

The weight given a measure of effect also depends on the quality of the data as well as the overall study design and execution. The data developed in the QAPP/FSP and collected as described in the field sampling report (OBG, Inc., 2000) provides information to evaluate each selected measure.

There is considerable uncertainty associated with estimating risks, because ecological systems are complex and exhibit high natural variability. Measures of effect typically have specific strengths and weaknesses related to the factors discussed above. Therefore, it is common practice to use more than one measure of effect to evaluate each assessment endpoint.

The assessment endpoints and associated measures of effect are summarized in Table 4-1. The endpoints and measures of effect were modified slightly from the work plan to better represent species observed at the site.

5.0 EXPOSURE ASSESSMENT

This section describes the data used in this ecological risk assessment and selects COPCs for assessment.

5.1 Data used in Ecological Risk Assessment

The chemical data used in this assessment were collected in 1999 specifically for this project. The data collection followed the Quality Assurance Project Plan/Field-Sampling Plan (QAPP/FSP) for the project (Ecological Risk Assessment Quality Assurance Project Plan Field Sampling Plan for Sauget Area 1, Prepared for Solutia, Inc., St. Louis, MO, Menzie-Cura & Associates, Inc., August 12, 1999). The QAPP included sampling and analysis for dioxin congeners, herbicides, metals, polychlorinated biphenyls (PCBs), organochlorine pesticides, semi-volatile organic compounds (SVOCs), and volatile organic compounds (VOCs). The field work was documented in:

Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., September 2000.

The data and data validation were originally presented in:

Sauget Area 1 Site, Support Sampling Project, Data Validation Report, Solutia Inc., St. Louis, MO, O'Brien & Gere Engineers, Inc., August 2000.

5.1.1 Sampling Locations

The chemical data used in this ecological risk assessment are by medium:

Surface water: Surface water samples were collected from Dead Creek Section F (3 samples), the Borrow Pit Lake (3 samples), and the reference areas (2 samples from each of two areas). These locations are shown on Figure 5-1 (Dead Creek, the Borrow Pit Lake and reference area 1) and Figure 2-1 (reference area 2).

Sediment: Surficial sediment samples were collected from depths of 0 to 2 inches from Dead Creek Section F (3 samples), the Borrow Pit Lake (3 samples), and the reference areas (2 samples from each of two areas). These locations are shown on Figure 5-2 (Dead Creek, the Borrow Pit Lake and reference area 1) and Figure 2-1 (reference area 2).

Biota – Plants: Two samples of creeping buttercup (Ranunculus reptans) were collected from Dead Creek Section F (co-located with sediment sampling locations) and two samples were collected from the reference areas. A photograph of this species is in Appendix B. This species was collected because it was present in most sections of Dead Creek. It was not present in the Borrow Pit Lake.

Biota – Clams: Three composite freshwater clam (Pyganodon grandis) samples were collected from the Borrow Pit Lake and three composite samples were collected from the reference areas. Clams were abundant in the Borrow Pit Lake. A photograph of this species is in Appendix B.

Biota – Shrimp: The work plan called for the collection of crayfish, but none were observed of Dead Creek and the Borrow Pit Lake is too silty and muddy to support crayfish. Shrimp (Palaemonetes kadiakensis), which were abundant in the Borrow Pit Y during the site reconnaissance or during the main sampling event. It is likely that the substrate for crayfish. A photograph of this species is in Appendix B. One composite shrimp sample was collected from the Borrow Pit Lake and two composite samples were collected from the reference areas. Why? Were in Upstream airon

Biota – Fish: Fish were abundant in the Borrow Pit Lake but were not present in Dead Creek Section F. Whole bodies were analyzed for use in the ecological risk assessment. The data used in this risk assessment include: three composite largemouth bass samples from the Borrow Pit Lake and two each from each of the two reference areas; three composite brown bullhead samples from the site and three from the reference areas; and three composite forage fish (minnows and shiners) samples from the site and four from the reference areas.

Soil: Surficial floodplain soil samples were collected from depths of 0 to 6 inches from developed (designated "DAS") and undeveloped (designated "UAS") areas. Sample locations are shown on Figure 5-3.

The summary statistics for these data (by medium and site location or reference area) are presented in Appendix C.

5.1.2 Calculation of PCB and dioxin/furan concentrations

Samples were analyzed for PCB homologs, and polychlorinated dioxin and polychlorinated furan congeners. PCBs, dioxins, and furans are complex mixtures of individual congeners that have different volatilities, solubilities, and rates of biodegradation and metabolism as well as different toxicities. This section discusses how these data were handled in this ecological risk assessment.

Total PCBs were calculated by summing the concentration of the detected homologs and one

half the detection limit for homologs that were not detected. If a homolog was never detected in any sample in a particular medium or area, it was not included in the total. Only two out of ten homologs, hexachlorobiphenyl and pentachlorobiphenyl, were detected in sediment and most site biota. An additional two homologs, heptachlorobiphenyl and tetrachlorobiphenyl, were detected only in largemouth bass tissue at the site.

Polychlorinated dioxin and polychlorinated furan congeners were evaluated collectively as a dioxin Toxic Equivalency Quotient (TEQ). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent of a group of compounds that bind to an intracellular protein called the aryl hydrocarbon receptor (AhR). Other dioxin congeners also bind to this receptor and have been shown to exert toxic responses similar to those exerted by TCDD. The biological activity of these compounds seems to correlate with their binding affinity to this receptor (WHO, 1998). The toxic equivalency quotient (TEQ) approach was developed to represent the fractional toxicity of dioxin congeners relative to TCDD. TEQs are calculated as follows:

 $TEQ = \sum (Dioxin-like Congener Concentration)_i \cdot TEF_i]_n$

where,

TEF = toxic equivalency factor for congener i, and n = number of dioxin-like congeners in the mixture of concern.

Toxic equivalency factors (TEFs) for each dioxin-like congener are available for mammals (the same values used for humans), birds, and fish to account for differing wildlife sensitivities (Van den Berg et al., 1998).

TEQs for dioxins were calculated for each medium by multiplying the detected concentration (or half the detection limit) of each by its TEF and adding the products to obtain the dioxin TEQ. If a congener was never detected in a particular medium or area, it was not included in the total. Data designated with an "M" in the data validation to indicate "estimated maximum potential concentration" were also treated as not detected, since the presence of that particular congener in that sample is not certain.

5.1.3 COPC Selection Process

The selection of COPCs for ecological risk assessment was a multi-step process. The first step was comparison of combined surface water and sediment data to published benchmarks and reference or background concentrations. Table 5-1 compares the maximum concentration detected in surface water of Dead Creek Section F and the Borrow Pit Lake to Illinois Surface Water Quality Standards (Illinois, 1999), National Recommended Water Quality Criteria (USEPA, 1999a), Great Lakes Initiative Tier II Water Quality Guidelines (summarized in Suter and Tsao, 1996), and other water quality guidelines assembled by Suter and Tsao

(1996). Precedence was given to these standards and guidelines in the order given. If multiple values were available for a compound, the Illinois value superceded the national value, which superceded the Great Lakes value. Compounds that exceeded the corresponding benchmarks were retained as COPCs. If a benchmark value was not available for a compound, but it was detected at a concentration greater than twice the average concentration of the combined reference data, it was also retained as a COPC.

Table 5-2 compares maximum sediment concentrations for Dead Creek Section F and the Borrow Pit Lake to consensus-based sediment quality guidelines for freshwater developed by MacDonald et al. (2000), Florida sediment quality guidelines (MacDonald, 1994), and Ontario Sediment Quality Guidelines (Persaud et al., 1993). The use of these guidelines for ecological screening was recommended by Scott Cieniawski of USEPA Region 5. If the concentration exceeded any of the benchmark values, the compound was retained as a COPC. If a benchmark value was not available for a compound, but it was detected at a concentration greater than twice the average concentration of the combined reference data, it was also retained as a COPC.

Compounds considered non-toxic (calcium, magnesium, sodium, and potassium) were not included as COPCs. In addition, two compounds were excluded as COPCs because they were detected at a very low overall frequency (ethylbenzene was detected in one sediment sample out of six at 11 ug/kg and in no other medium; 2,4-dimethylphenol was detected in one of two plant samples at 51 ug/kg and in no other medium).

As a final screen for COPCs presented on Table 5-3, maximum concentrations in site biota were compared to maximum concentrations from the same biota from the reference areas. Additional compounds were retained as COPCs that were detected in site biota at concentrations above those detected in biota from the reference areas, but that had not been detected in surface water and sediment.

The resulting COPCs for ecological risk assessment in Dead Creek are: 2,4-D, dicamba, dichloroprop, MCPA, MCPP, aluminum, antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, silver, zinc, total PCBs, total DDT, aldrin, alpha-chlordane, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, endrin aldehyde, endrin ketone, gamma chlordane, gamma-BHC, heptachlor, heptachlor epoxide, methoxychlor, acenaphthalene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, di-n-butylphthalate, dibenzo(a,h)anthracene, diethylphthalate, fluoranthene, indeno(1,2,3-c,d)pyrene, and dioxin calculated as the toxicity equivalent of 2,3,7,8-TCDD. Note that total concentrations of DDT and PAHs were calculated as the sum of the concentrations of individual compounds detected in that sample using one half the detection limit for compounds not detected in that sample but detected in that medium and at that location.

6.0 ECOLOGICAL EFFECTS ASSESSMENT

The effects assessment summarizes and weighs available evidence regarding the potential for contaminants to cause adverse effects. These adverse effects may include impacts on growth, reproduction, and survival. The general approaches used to assess ecological effects are summarized below. Additional details are provided in the risk characterization section.

6.1 General Approach for Assessment of Ecological Effects

Various approaches are used to assess risk to ecological receptors. These individual lines of evidence are evaluated to provide an overall weight of evidence regarding risk. For benthic invertebrates and fish, these include:

- Comparison of concentrations of COPCs in sediment and surface water to established benchmarks;
- Evaluation of sediment toxicity data within the site and with comparison to reference areas;
- Analysis of benthic community structure and comparison to reference locations;
- Examination of concentrations of COPCs in sediment in comparison to reference locations; and
- Comparison of concentrations of COPCs in tissue to toxicity reference values (TRVs) that have been reported to cause adverse effects in similar organisms.

For wildlife (birds and mammals), the approach is:

• Comparison of estimated dietary doses to TRVs that have been reported to cause adverse effects in similar organisms. The assessment also uses observations of wildlife and habitat that have been made during several site visits to Dead Creek and the Borrow Pit Lake.

7.0 RISK CHARACTERIZATION

This section describes the measures of effect for each assessment endpoint, the data collected as part of those measures, and analyses performed with those measures to evaluate each assessment endpoint

7.1 Assessment Endpoint 1; Sustainability of Warm Water Fish

The COPCs may exert direct effects on warm water fish through exposure in the water, sediment, or prey, and indirectly by affecting their prey, the macroinvertebrate community. The associated measures of effects assess exposure pathways and potential effects. Some rely upon direct observations of conditions; some involve measures of toxicity; and others use literature values.

7.1.1 Measure of effect 1a: body burdens of COPCs in selected fish species

Purpose and Rationale. Fish exposed to bioaccumulative compounds in their diet or in water can accumulate these COPCs in their tissues. Contaminants tend to accumulate in organs such as the liver and kidney to a greater degree than in the musculature. However, COPC levels in tissue on a whole body basis are useful for evaluating risks to animals that eat fish. The assessment uses measurements of COPCs in fish tissue to evaluate exposure and effects on the fish, and to provide data for use in other parts of the assessment.

Approach. The assessment uses this endpoint to evaluate exposure and effects. As a measure of exposure, it compares body burdens of COPCs in small forage fish, medium-sized bottom-feeding fish (brown bullheads) and larger piscivorous fish (largemouth bass) to the same fish species in reference areas. Therefore, the comparisons of fish body burdens are used to assess if fish in the Borrow Pit Lake are exposed to COPCs in excess of those that occur in the reference areas. The assessment will also use the body burden data in subsequent sections as input to the food chain exposure models for the representative piscivores (the great blue heron, bald eagle, and river otter).

As a measure of effects, the assessment compares measured body burdens to literature values at which effects have been reported.

Evaluation: Tables 7-1, 7-2 and 7-3 compare concentrations detected in largemouth bass, brown bullhead, and forage fish (small minnows), respectively, from the Borrow Pit Lake to concentrations in reference areas. Compounds detected at higher concentrations in Borrow Pit Lake fish than in fish from reference areas included: dicamba, MCPA, chromium, total PCBs, DDE, alpha chlordane, heptachlor, and 2,3,7,8-TCDD TEQs in largemouth bass; dichloroprop, mercury, total PCBs, DDE, alpha chlordane, heptachlor, and 2,3,7,8-TCDD

TEQs in brown bullhead; and dicamba, MCPA, copper, mercury, DDE, indeno(1,2,3-c,d)pyrene, and dibenz(a,h)anthracene in forage fish (minnows).

Table 7-4 presents NOAEL and LOAEL concentrations in fish tissue from the literature. Where the information is available, NOAEL and LOAEL concentrations have been selected for effects on mortality, growth, and reproduction or development. Tables 7-1, 7-2, and 7-3 also compare these values to concentrations detected in site fish.

The only COPC for which a NOAEL or LOAEL body burden is exceeded in site fish is mercury. The maximum mercury concentration (0.26 mg/kg wet weight) but not the average mercury concentration in brown bullheads slightly exceeded the benchmark of 0.25 mg/kg mercury wet weight. This was due to one composite brown bullhead sample. The other two brown bullhead samples had lower mercury concentrations (0.05 and 0.075 mg/kg wet weight), similar to brown bullheads in the reference areas. The maximum mercury concentration in forage fish samples (0.6 mg/kg wet weight) also exceeded the benchmark, but the average concentration did not. This was also due to the concentration in one composite sample. The concentrations in the two other samples were 0.052 mg/kg wet weight and not detected at a detection limit of 0.1 mg/kg wet weight. These concentrations were similar to those from the reference areas. Largemouth bass concentrations did not exceed any of the available benchmarks. Note that body burden benchmarks were not available for all COPCs detected in fish.

The benchmark value of 0.25 mg/kg wet weight represents a no observed effects concentration for mortality, but a lowest observed effects concentration for reproductive effects (Friedmann et al., 1996). In a feeding study with walleye, a predatory fish, using low and high doses of methylmercury, Friedmann et al. (1996) found that ingestion of methylmercury in prey resulted in an inhibition of growth, testicular development, and immune function. The resulting body burdens from both the low and high methylmercury level diet were associated with these effects. The body burden associated with the low dietary level was 0.25 mg/kg mercury wet weight. Walleye with body burdens at this level exhibited the effects described above, but not mortality. Friedmann et al. point out that a concentration of 0.25 mg/kg mercury wet weight is within the range of mercury concentrations typically detected in North American fish. They gave a range of 0.03 to 0.7 mg/kg mercury (wet weight) in the Northeastern United States and Canada.

The USEPA (1999b) nationwide database on total mercury concentrations in fish tissue contains information on mercury concentrations in fish tissue in Illinois. Most of the samples collected in Illinois are composites of 2 to 5 fish fillets of several species collected in various lakes and rivers in the upper Mississippi River basin from 1990 to 1993. A total of 85 samples were collected in these lakes and rivers. For the fish species in water bodies in the upper Mississippi River basin in Illinois, the concentration of total mercury in composite fillets ranged from less than 0.010 mg/kg (wet weight) to 0.730 mg/kg (wet weight). The minimum concentration (<0.010 mg/kg) was in a composite of 5 channel catfish (*Ictalurus*

punctatus) collected from the upper Mississippi River in East Grand Tower, Jackson County. The maximum concentration (0.730 mg/kg) was in a composite of 5 largemouth bass (Micropterus salmoides) collected from Cedar Lake near Makanda, Jackson County. It should be noted that there is an active mercury fish advisory for largemouth bass in Cedar Lake. Seventy-one largemouth bass samples are listed in the database. Most of these are composite samples, however there are seven individual fish samples. The total mercury concentrations in fillets ranged from 0.010 mg/kg (in a composite of 4 fish collected from the Mississippi River in Rock Island County) to 0.730 mg/kg (in a composite of 5 fish from Cedar Lake). In the individual largemouth bass samples, the mercury concentrations ranged from 0.250 mg/kg to 0.460 mg/kg (both ends of the range measured in Chicago). 1A0,000

Therefore, the benchmark concentration of 25 mg/kg mercury wet weight is within the range of concentrations detected in fish in the Mississippi River basin in Illinois. The mercury concentrations in Borrow Pit Lake fish that exceed the benchmark concentration may reflect regional conditions and may not necessarily be related to the site.

The first of the factor of the

water quality criteria for protection of fish and wildlife

Purpose and Rationale. Water concentrations provide a measure of exposure, and water quality criteria indicate levels above which effects may occur. This measure of effect evaluates the potential for water concentrations of COPCs in Dead Creek and the Borrow Pit Lake to cause adverse effects.

Approach: The assessment compares measured concentrations of COPCs in surface water to water quality criteria. Exposure of individual fish and the populations of fish partly depend on the exposure field and the distribution and behavior of the fish. Thus, the area over which water quality criteria are exceeded is an important consideration when evaluating exposure. We evaluate effects with respect to spatial extent and degree to which surface water concentrations exceed water quality criteria.

Evaluation: Tables 7-5 and 7-6 compare surface water concentrations in Creek Section F and the Borrow Pit Lake to Illinois Water Quality Standards, National Recommended Water Quality Criteria (or Ambient Water Quality Criteria (AWQC)), Great Lakes Initiative Tier II values, and other water quality guidelines summarized by Suter and Tsao (1996). For metals, the Illinois standards and AWQC were adjusted for measured water hardness, as noted in the tables.

Ten metals and dioxin congeners were detected in surface water in Creek Section F. The acute criterion was exceeded for barium in each sample, and the chronic criteria were exceeded in one or two samples for manganese and aluminum. Concentrations of barium, aluminum and manganese in Creek Section F were less than those detected in reference areas.

In the Borrow Pit Lake, 11 metals, ten pesticides, and dioxin congeners were detected in surface water. Acute criteria were exceeded for aluminum and barium in one or two samples. Chronic criteria were exceeded for aluminum, barium, iron, and manganese in each sample. Concentrations of barium, aluminum, iron and manganese in Borrow Pit Lake surface water were less than those detected in reference areas.

There were no AWQC or other guidelines available for 2,3,7,8-TCDD based only on toxicity. For three pesticide compounds detected in Borrow Pit Lake surface water (dieldrin, endrin, and heptachlor epoxide), detection limits were greater than standards or criteria in one or two out of three samples.

7.1.3 Measure of effect 1c: Sustainability of benthic macroinvertebrate communities that comprise a prey base

Purpose and Rationale. Benthic macroinvertebrates are an important source of food for many fish species. They experience direct sediment exposures due to their life histories. Exposures that result in reduced abundance, diversity, or biomass of these aquatic macroinvertebrates could indirectly effect fish populations. Further, quantitative studies of benthic macroinvertebrates have a long history of use in water quality studies.

The assessment uses the sediment triad approach as part of a weight-of-evidence analysis to evaluate the sustainability of benthic macroinvertebrate communities in Dead Creek and the Borrow Pit Lake. The sediment triad approach evaluates three elements of a benthic community:

Sediment chemistry measurements;

Field assessment of benthic macroinvertebrates;

Sediment toxicity testing using indicator benthic macroinvertebrates.

7.1.3.1 Sediment Chemical Measurements

Concentrations of COPCs in sediment are compared to sediment benchmarks to evaluate whether adverse biological effects to benthic macroinvertebrates could occur. The sediment guidelines used in this assessment are the consensus-based Threshold Effect Concentrations (TECs) and Probable Effects Concentrations (PECs) developed by MacDonald et al. (2000) and the Ontario (Persaud et al., 1993) Lowest Effect Levels (LEL) and Severe Effects Levels (SEL). Sediment concentrations which exceed these benchmarks do not necessarily indicate that adverse effects to benthic macroinvertebrates have occurred. This risk uses multiple lines of evidence to assess if benthic macroinvertebrates are adversely affected by COPCs.

Tables 7-7 and 7-8 compare sediment concentrations in the Creek Section F and the Borrow Pit Lake to Sediment Quality Guidelines.

In Creek Section F, Probable Effects Concentrations or Severe Effects Levels were exceeded for six metals, cadmium, copper, lead, mercury, nickel, and zinc. Threshold Effects Concentrations were exceeded for these metals and for arsenic, iron, manganese, total PCBs, seven pesticides, and fluoranthene. The only COPCs with concentrations above these guidelines but less than concentrations detected in reference areas were iron and manganese.

In the Borrow Pit Lake, PEC and SEL guidelines were exceeded by manganese and nickel. These metals and arsenic, cadmium, copper, iron, lead, zinc, DDE, total DDT, gamma-BHC, and heptachlor epoxide exceed the TEC and LEL values. Of these, only iron and manganese concentrations are less than those in the reference areas.

In both Borrow Pit Lake and Creek Section F, there is some uncertainty because detection limits for some COPCs were greater than the Sediment Quality Guideline values. These included total PCBs in one sample location in Creek Section F. Other compounds that had detection limits greater than sediment guidelines in one or two out of three sample locations in Creek Section F or Borrow Pit Lake were 4,4,'-DDT, aldrin, dieldrin, endrin, heptachlor, heptachlor epoxide, gamma chlordane, and gamma-BHC (lindane). There were no guidelines available for some of the constituents.

7.1.3.2 Field assessment of benthic macroinvertebrate community

Effects are evaluated by comparing the composition and abundance of benthic macroinvertebrates within Dead Creek and the Borrow Pit Lake at different levels of concentrations of COPCs in sediment. Data from the reference areas support the assessment because these reflect conditions in water bodies unaffected by site COPCs.

Several metrics described by Barbour et al. (1999) were employed to discern the status of the benthic macroinvertebrate community in Creek Sector F, the Borrow Pit Lake, and the reference locations (PDC-1, PDC-2, Ref 2-1, and Ref 2-2). These metrics addressed the richness, evenness, and composition of the benthic community as well as the tolerance of each taxon to perturbation.

Samples for benthic community analysis were co-located with sediment sampling locations for chemical analysis. The results and the data summary table are in Appendix D.

Seven metrics were used to assess the benthic community at each station. The number of organisms, the number of taxa, and the three dominant taxa at each station are presented in Table 7-9. The number of taxa was used as a simple measure of richness. Dominant taxa was used as a simple measure of evenness. Three indices were used to measure diversity in terms of heterogeneity at each station, the Shannon-Weaver Index (H'), relative H', and Simpson's

Index (λ). The results of these indices are in Table 7-10. The relative H' index is a comparison of actual diversity to maximum diversity (H'/H'_{max}), where maximum diversity is defined as equal abundance among all taxa. Simpson's Index expresses the probability that two randomly sampled benthic organisms will belong to the same taxa and is a measure of heterogeneity of the benthic community. The composition (Table 7-11) of the benthic community was measured by assessing the relative abundance of six major taxonomic groups (Chironomids, Oligochaetes, Non-chironomid insects, Molluscs, Crustaceans, and Other). A version of Hilsenhoff's Biotic Index of Organic Stream Pollution (Hilsenhoff, 1987), modified to include all benthic macroinvertebrates (Table 7-12), was employed to measure the degree of benthic community impairment based on the tolerance to perturbation of the benthic macroinvertebrates. Data on tolerance were taken from Barbour et al. (1999). Abundance of functional feeding groups (FFG) was also looked at as an additional measure of community impairment and is summarized in Figure 7-1. Data on functional feeding groups were taken from Barbour et al. (1999).

In terms of the number of taxa, dominant taxa, and taxonomic group abundance (Table 7-9), the benthic community from each of the sampling locations resembles the profundal benthic community of an eutrophic lake. This community composition suggests impairment, as samples were taken from the littoral zones of lentic bodies (Borrow Pit Lake and its associated reference location, Ref 2-2) and the low order stream habitats of Dead Creek Section F and the other reference locations, PDC-1, PDC-2, and Ref 2-1. A typical profundal benthic community consists of a low number of taxa dominated by chironomids, oligochaetes and other organisms which are tolerant to low dissolved oxygen concentrations. Impairment of the benthic community is most likely due to the poor habitat (e.g., silty substrate, low dissolved oxygen, etc.) available in these locations.

As described below, site locations show a slightly less impaired benthic community than reference locations. This may in part be due to the relative isolation of the site from agricultural land and development afforded by dense riparian vegetation. Creek Sector F contains the least impaired benthic community as it contains more diverse habitat: a closed canopy, relatively heterogeneous substrate, and higher water level. Overall, impairment as a result of poor habitat may be associated with low water levels and high water temperatures seen in each location. The organically rich sediments of the sampling locations can exacerbate the effects of low water and high temperatures by decreasing already low dissolved oxygen concentrations in the surface water. Concentrations of total organic carbon (TOC) ranged from 12,000 to 84,000 mg/kg dry weight (Appendix A-2). Secondary causes of impairment due to poor habitat include high homogeneity of substrate, silty and very soft sediment, and little to no aquatic macrophytic growth. These are all evident in Dead Creek and the Borrow Pit Lake.

The indices of diversity (H', H'max, and Shannon's) indicate that some locations (i.e., BP-1 and Creek Sector F-1) have a relatively diverse benthic community (Table 7-10). The low number of taxa and the low number of organisms seen in each location, however, overshadow

these results (Table 7-11). The number of organisms in reference location Ref 2-1 is greater than the other stations by an order of magnitude. The other metrics employed, however, indicate that Ref 2-1 is impaired to the same degree as the other stations. The greater number of organisms in Ref 2-1 could be an artifact of proportional sub-sampling, which may have resulted in an over-estimation of the number of organisms present in the entire sample, as only 10% of Ref 2-1 was actually analyzed.

According to the modified Hilsenhoff's Biotic Index (Table 7-12), the degree of impairment at all stations in Creek Sector F, the Borrow Pit Lake, and the reference areas ranges from significantly impaired to severely impaired.

Functional Feeding Groups were summarized to assess impairment as well (Figure 7-1). Generalists, such as gather/collectors and omnivores, are the dominant functional feeding groups in nearly all stations. This is an indication of impairment, as generalists are considered more tolerant than specialists such as scrapers and shredders. The abundance of predators is proportionately high in stations F-2 and BP-1. Most of the predators in F-2 were ceratopogonids (biting midges; Order diptera). The predators of BP-1 were a diverse group consisting mainly of odonates (dragon and damselflies) and two species of the Order hemiptera.

The benthic community was impaired in Dead Creek Sector F, the Borrow Pit Lake, and the reference areas. Due to the poor habitat and low water conditions observed during field sampling, it is likely that impairment was mainly a result of these physical conditions (i.e., low water levels, low dissolved oxygen, and silty substrate).

7.1.3.3 Sediment toxicity testing

The assessment uses laboratory sediment bioassays conducted on sediments from Dead Creek, the Borrow Pit Lake, and the reference areas to evaluate the potential effects of whole sediment on representative benthic macroinvertebrates (amphipods and chironomid larvae). The toxicity of the sediment is compared to that of the standard control sediment used by the laboratory as part of the laboratory's standard operating procedures. In samples where the sediment was found to be acutely toxic, chronic toxicity tests were not performed. The summary of the laboratory testing are in Appendix E.

The results of the amphipod and chironomid bioassays are conflicting. The amphipod bioassays do not suggest toxicity in Dead Creek Section F or Borrow Pit Lake sediments, while the chironomid bioassays do suggest toxicity both on site and in the reference areas. Toxicity bioassays are complex and can contain a high degree of variability in their results. These data suggest that site sediments may be toxic to some organisms, but that reference sediments are also toxic to the same organisms. The agent causing the toxicity is unknown.

Hyalella azteca (Amphipod) Acute Toxicity

Survival of the amphipod in the 10-day acute toxicity bioassay was high at all stations in Creek Sector F, the Borrow Pit Lake, and reference locations, indicating that sediment was not acutely toxic to *H. azteca*. There were no statistically significant differences in survival between samples and laboratory controls. Growth of the amphipod was statistically lower in stations 1 and 3 in the Borrow Pit Lake. The results of the *H. azteca* acute toxicity bioassay are presented in Table 7-13.

H. azteca Chronic Toxicity

The results of the 42-day chronic survival, growth, and reproduction toxicity bioassay are presented in Table 7-14. This is a test that is relatively new and there is less experience with its execution and performance as compared to the acute toxicity tests.

The results of the laboratory controls were unexpectedly low. Therefore, the results of the reference locations were used for comparison instead (PDC-1 and PDC-2 for Creek Sector F; Ref 2-2 for the Borrow Pit Lake). With the exception of one reference station (Ref 2-1), survival, growth, and reproduction were statistically similar to the reference stations, indicating that sediments were not chronically toxic to H. azteca.

Chironomus tentans (Chironomid) Acute Toxicity

Survival of the chironomid larvae in the 10-day acute toxicity bioassay was significantly lower than the laboratory controls in all stations in Creek Sector F, the Borrow Pit Lake, and reference locations. Growth was significantly lower than the laboratory controls in stations F-2, and the reference stations PDC-1, and Ref 2-1. Sediment from Creek Sector-F and stations BP-2, PDC-1, and Ref 2-2 were found to be acutely toxic to *C. tentans* larvae. The results of the *C. tentans* acute toxicity bioassay are presented in Table 7-15.

C. tentans Chronic Toxicity

The results of the 20-day chronic survival, growth, emergence, and reproduction toxicity bioassay are presented in Table 7-16. Survival, emergence, and reproduction in stations BP-1 and BP-3 in the Borrow Pit Lake were significantly lower than laboratory controls. Emergence and reproduction in reference station PDC-2 were significantly lower than laboratory controls.

7.2 Assessment Endpoint 2; Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the mallard duck, great blue heron, muskrat, and river otter

The assessment uses five measures of effects to evaluate risks to aquatic wildlife. The assessment will use exposure models to evaluate different routes of exposure including ingestion of water, sediment and food (plants, benthic macroinvertebrates and fish). This subsection describes these measures of effects.

7.2.1 Measure of effect 2a: Wildlife species composition and habitat use

Purpose and Rationale. This measure of effect directly examines the receptors, wildlife, to estimate if they are using Dead Creek and the Borrow Pit Lake. The assessment is a measure of the degree to which local and migratory wildlife use the habitat and the extent to which it supports their needs.

Approach: The assessment compares the composition and habitat use by wildlife to observations of species composition of wildlife and their use of a reference area. This type of survey is qualitative. The strength of the analysis is that it indicates whether Dead Creek can support wildlife species comparable to unaffected reference areas. However, because of the qualitative nature of the observations and the high natural variability that can exist in wildlife populations, direct observations may not reveal effects.

Evaluation: Menzie-Cura & Associates, Inc. made observations of the site in 1996, and made observations of the site and reference areas during the site reconnaissance survey conducted in September 1999 and during sampling in October and November 1999. The information here is also based on research on ecological receptors at the site.

The portion of Dead Creek Section F included in this assessment flows through riparian woods and shrubs and into the Borrow Pit Lake. The Borrow Pit Lake is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees and emergent wetland vegetation. Very little submerged or emergent vegetation grows in the pond. Photographs of these areas in October 1999 are in Appendix B. At that time, water levels were extremely low and sediment was exposed in large portions of the Borrow Pit Lake. Ducks, herons, and fish were observed in the lake. Fish species observed in the pond include: white crappie, largemouth bass, bluegill sunfish, brown bullhead, yellow bullhead, walleye, drum, silver carp, and gar. Table 7-17 lists fish and wildlife species observed at and near the site during the site visit in 1996 and field sampling in 1999.

During high water conditions, Dead Creek flows from the Borrow Pit Lake into the ditched section of Prairie du Pont Creek. At the confluence of Dead Creek and Prairie du Pont Creek and above it, the ditch shore is vegetated with grasses, herbs, and small shrubs. The flow in

the ditch is northwest to Arsenal Island on the Mississippi River. Arsenal Island contains areas of mature riparian woods and agricultural fields. The shoreline of the lower end of the ditch (referred to on the USGS map as Cahokia Chute) is lined with riparian woods, principally large cottonwoods and willow. Large catfish, wood duck, wading birds, and turtles were observed in the channel. Cahokia Chute forms the eastern border of Arsenal Island. The waterway flows north to south, draining the region northeast of the island. It appears that during times when the Mississippi River is high, the river uses the chute channel to flow around Arsenal Island. Any water from the Dead Creek watershed therefore only flows through the lower half of the Cahokia Chute between the confluence with the ditched Prairie du Pont and the Mississippi River. The remains of a bald eagle nest and congregating wading birds were observed in 1996 at the southern tip of Arsenal Island, where the Chute flows into the Mississippi.

Extensive wetlands occur west of Route 3, particularly in the vicinity of the Borrow Pit Lake. The Creek's wetlands appeared healthy with no evidence of ecological stress (no chlorotic plants, no monospecific stands of vegetation, no areas of dying or dead vegetation, no observed surface water sheens or sediment staining) with the exception of extremely low water levels observed in the Fall of 1999 when portions of Dead Creek and the Borrow Pit Lake dried out completely. The wetlands also appeared to support a diverse aquatic and terrestrial wildlife community, with abundant prey species (i.e., fish, frogs, turtles) and predatory species (i.e., wading birds, waterfowl, raccoons). The wetlands west of Route 3 receive water from both Dead Creek and from drainage areas to the north.

Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species

According to the records of the Illinois Department of Natural Resources' Natural Heritage Inventory, the only federally endangered or threatened species in the study area is the federally threatened bald eagle (Haliaeetus leucocephalus). In 1993, a pair of eagles unsuccessfully attempted to nest at the southern tip of Arsenal Island, where the ditched portion of Prairie du Pont Creek enters the Mississippi River. The pair apparently was scared off the site based on the unsuccessful nesting attempt. The next year the pair returned to the island, but no monitoring was conducted to determine if they successfully nested. The nest has since blown down and no other nests have been constructed on the island. Bald eagles were not observed during any of the surveys or field work performed at the site.

EPA sim Them in 99

Portions of the area suitable for eagle foraging include waterbodies large enough to support large fish such as carp and catfish. The Mississippi River, the channelized section of Prairie du Pont Creek, and the Borrow Pit Lake appear to support large fish and provide enough open water for eagles to fish. No foraging eagles were observed during the site visit, nor have local people that were surveyed in the area seen eagles in the vicinity.

EPA hys

Habitat Known to be Used by State Designated Endangered or Threatened Species

The Illinois Natural Heritage Inventory did not have any records of state-listed endangered or threatened species in the study area. However a number of state-listed wading birds were observed throughout the wetlands and waterways. Illinois endangered species observed were little blue heron (Egretta caerulea), snowy egret (Egretta thula), and black-crowned night heron (Nycticorax nycticorax). Great egret (Casmerodius albus), an Illinois threatened species, was also observed. Small numbers (one to ten individuals) of these wading birds were found foraging along sections of Dead Creek, the ditched length of Prairie du Pont Creek, Cahokia Chute, and the Mississippi River. The largest concentrations of foraging herons (approximately ten individuals at a location) were observed at the confluence of Dead Creek and the ditched Prairie du Pont Creek, and where the ditched Prairie du Pont flows into the Mississippi. These areas likely support the best concentrated fishing areas for wildlife along the waterways.

No wading bird colonies were located within the study area. However, the Illinois Natural Heritage Inventory has documented two 1000-2000 nest mixed-species colonies in East St. Louis. The closest of these two colonies is approximately one mile east of Sauget Area I near the Alton & Southern rail yards in Alorton. The second site is over two miles to the north at Audubon Avenue and 26th Street. These two colonies contain the only breeding little blue heron and snowy egret in Illinois. In addition, black-crowned night heron, great egret, cattle egret (*Bubulcus ibis*), great blue heron (*Ardea herodias*), and green-backed heron (*Butorides virescens*) nest in the colonies.

In 1988, because the region is heavily industrialized with numerous Superfund sites, the U.S. Fish & Wildlife Service (USFWS) collected black-crowned night heron and little blue heron eggs from the Alorton colony for contaminant analysis (Young, 1989 - unpublished draft). Sediment samples were also taken in areas of observed wading bird foraging around the East St. Louis region. No testing was done of sediments in the Dead Creek drainage. Polychlorinated biphenyls (PCBs), DDE, and metals were detected at varying levels in the wading bird eggs.

The observed endangered and threatened wading birds forage on a wide range of aquatic organisms, such as fish, frogs, and crayfish, as well as some terrestrial species such as reptiles and insects. The USFWS study found that wading birds forage over a wide area around East St. Louis. The Dead Creek/Prairie du Pont wetlands system composes a relatively small percentage of the available wetland foraging area in the region.

Reference Areas: Reference area 1 was a section of Old Prairie du Pont Creek near the town of East Carondelet, approximately 3 miles southwest of the end of Dead Creek in the Borrow Pit Lake. This section of Old Prairie du Pont Creek is a broad shallow water body with a mud substrate similar to the Borrow Pit Lake. It is distant from any influence from the site or other industrial areas, but is similar to the Borrow Pit Lake

in that it is near agricultural land. It has less of a riparian zone than the Borrow Pit Lake. Wading birds were observed in this area. It supports a similar fish community to the Borrow Pit Lake.

Two bodies of water in Monroe County comprise reference area 2, were selected during the main sampling event. These water bodies were approximately 20 miles south of Dead Creek. Reference area 2-1 was in Long Slash Creek north of the culvert where Merrimac Road crosses the creek. This section was similar to Dead Creek sectors B through E in that it was shallow and muddy. Reference area 2-2 was a flooded borrow pit north of Fountain Creek. Reference area 2-2 had a muddy substrate and similar fish community to the Borrow Pit Lake.

Conclusions: During the various field surveys and contact with state and federal agencies, three categories of sensitive environments were identified in the Dead Creek area: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands. The state-listed endangered and threatened species observed on site (herons and egrets) forage over a wide area, with the Dead Creek watershed forming only a small part of their available feeding territory.

The Dead Creek watershed also appears to support a diverse plant and animal community. While much of the creek flows through residential neighborhoods, sufficient natural riparian vegetation remains to support local aquatic and terrestrial communities. The ecological stresses observed (lack of emergent or submerged vegetation, impaired benthic invertebrate community) are due to poor habitat conditions including low water levels, silty substrate, and low dissolved oxygen concentrations. No other evidence of ecological stress was evident in Dead Creek or the Borrow Pit Lake. Birds and wildlife species are abundant and making use of the habitat.

7.2.2 Measure of effect 2b: Concentrations of COPCs in aquatic and marsh plants

Purpose and Rationale. The assessment compares concentrations of COPCs in creeping buttercup in Dead Creek Section F to that in reference areas. No submerged or emergent aquatic vegetation was present in the Borrow Pit Lake. Therefore, during the site reconnaissance, creeping buttercup was selected as a plant species that could be grazed upon by waterfowl and herbivorous mammals and that was present in most sections of Dead Creek. This species of plant has a fleshy stem, but a tiny root system. Therefore, the entire plant was analyzed for COPCs. If plants take up metals and PAHs from the water or sediments, waterfowl and herbivorous mammals could be exposed to these COPCs in their diet.

Approach: The endpoint is evaluated in multi-pathway exposure models for the mallard and the muskrat that consider concentrations of COPCs in sediment, water, and food. Exposures of waterfowl and herbivorous mammals within Dead Creek Section F are compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas. The

COPC concentrations measured in creeping buttercup will be used to evaluate potential dietary exposures of the mallard and muskrat.

Evaluation: Table 7-18 compares maximum and average concentrations of COPCs detected in creeping buttercup samples from Dead Creek Section F to samples from reference areas. Compounds detected at higher concentrations in plants from Dead Creek Section F or detected there and not in plants from the reference areas include the metals antimony, cadmium, copper, lead, nickel, and zinc, the PAHs acenaphthylene, benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene, the herbicide dicholoroprop, the pesticide gamma chlordane, and dioxins. Compounds detected at lower concentrations in plants from on site than at the reference areas include the metals aluminum and arsenic, two PAHs, aldrin, and heptachlor. Compounds detected in plants from the reference area but not from the site include the herbicides dicamba and MCPP, and the metal chromium. This indicates that herbivorous wildlife receptors could be exposed to higher doses of some site COPCs via the food chain than they would at reference areas.

Concentrations of COPCs detected in plants from Dead Creek Section F were used in food chain models to evaluate potential risks to mallards and muskrat, as representative species of herbivorous wildlife. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-19.

Food chain modeling indicated that the average doses of COPCs that muskrats receive from ingesting plants, sediment, and surface water from Dead Creek Section F do not exceed NOAEL or LOAEL concentrations, with the exception of aluminum which was detected in plants and sediment from Section F at concentrations lower than the reference areas. The hazard indices for aluminum were 50 and 5 compared to the NOAEL and LOAEL using average concentrations and 70 and 7 using maximum concentrations. Surface water concentrations of aluminum did not contribute appreciably to these hazard indices. Because a muskrat's foraging area is smaller than Creek Section F, the model assumed that a muskrat eats vegetation from Dead Creek Section F year round. This indicates that herbivorous mammals are not at risk above a level associated with a reference area.

Food chain modeling for mallards ingesting plants from Dead Creek Section F year round resulted in hazard indices less than 1 for each COPC using average concentrations and a foraging area of 580 hectares (USEPA, 1993; vs 0.3 hectares in Dead Creek Section F). Hazard indices were also less than one using maximum concentrations and assuming the mallard feeds only in Dead Creek Section F. This indicates that waterfowl that ingest plants from Dead Creek Section F are not at risk from COPCs.

7.2.3 Measure of effect 2c: Concentration of COPCs in surface waters

Purpose and Rationale. Many wildlife species will use Dead Creek and associated wetlands as a drinking water source. The presence of COPCs in water could be a source of exposure to these species. This measure of effect examines this potential route of exposure.

Approach: This endpoint is evaluated by two methods. Concentrations of COPCs in surface water are compared to drinking water values for wildlife developed by Sample et al. (1996). In addition, surface water concentrations are used in multi-pathway exposure models for wildlife that develop exposure doses based on concentrations in sediment, water, and food.

Evaluation: Surface water concentrations of COPCs in Dead Creek were compared to drinking water no observed adverse effects levels (NOAEL) and lowest observed adverse effects levels (LOAEL) developed by Sample et al. (1996). Tables 7-20 and 7-21 summarize these comparisons for Dead Creek Section F and the Borrow Pit Lake. For each compound, the lowest NOAEL values for water were used as benchmarks. In Creek Section F and the Borrow Pit Lake, surface water concentrations do not exceed any of the wildlife benchmarks. Note that there is no benchmark available for some constituents.

The results of food chain modeling are in Appendix E. In each of the food chain models, average and maximum surface water concentrations from Dead Creek Section F and the Borrow Pit Lake did not result in a potential risk to wildlife. Surface water concentrations contributed a minor portion to the hazard indices for each COPC.

7.2.4 Measure of effect 2d: Concentration of COPCs in fish

Purpose and Rationale: Some wildlife species such as the great blue heron and river otter eat primarily fish. This measure of effect evaluates this potential route of exposure.

Approach: The COPC levels measured in fish are used in the multi-pathway exposure model for the great blue heron and river otter that incorporate concentrations in sediment, water, and food. Exposures of the great blue heron and river otter within Dead Creek and the Borrow Pit Lake are compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

Evaluation: Tables 7-1, 7-2, and 7-3 compare maximum and average concentrations of COPCs detected in largemouth bass, brown bullhead, and forage fish, respectively, from the Borrow Pit Lake to concentrations in fish from reference areas.

In largemouth bass, dicamba, MCPA, chromium, zinc, DDE, gamma chlordane, heptachlor, di-n-butylphthalate, and dioxin TEQs were at higher concentrations in samples from the

Borrow Pit Lake than from the reference areas. In brown bullheads, dichloroprop, chromium, mercury, DDE, alpha chlordane, heptachlor, bis(2-ethylhexyl)phthalate and dioxin TEQs were at higher concentrations in samples from the Borrow Pit Lake than from reference areas. For forage fish, dicamba, dichloroprop, MCPA, copper, lead, mercury, zinc, DDE, indeno(1,2,3-c,d)pyrene, dibenz(a,h)anthracene, and dioxin TEQs were higher in samples from the Borrow Pit Lake. This indicates that exposure to some COPCs via fish ingestion will be higher at the Borrow Pit Lake than in other nearby areas.

Concentrations of COPCs detected in fish the Borrow Pit Lake were used in food chain models to evaluate potential risks to great blue herons and river otter, as representative species of piscivorous wildlife. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-19.

For the river otter eating a diet of large and small fish (72% "large fish" such as largemouth bass or brown bullhead and 28% forage fish, based on information in USEPA (1993)) from the Borrow Pit Lake, average concentrations of COPCs in fish tissue, sediment, and surface water resulted in hazard indices less than 1. This model used average concentrations of COPCs to represent an otter integrating exposure from different species of fish consumed and different locations within the Borrow Pit Lake. It also assumes that the Borrow Pit Lake comprises approximately 0.01 of a river otter's foraging area (5 hectares of the Borrow Pit Lake/400 hectare foraging area (USEPA, 1993). When maximum concentrations were used and the river otter was assumed to forage only in the Borrow Pit Lake, hazard indices exceeded 1 for aluminum and mercury. Aluminum concentrations in Borrow Pit Lake fish and sediment are less that those in the reference areas. Mercury concentrations in sediment were similar in the Borrow Pit Lake and reference areas. However some fish species (brown bullhead and small minnows) had higher mercury concentrations on site than in the reference areas. This conservative maximum assessment places an upper bound on potential risk, but does not represent risk to piscivorous mammals at the Borrow Pit Lake.

6

For the great blue heron, the food chain model using average concentrations of COPCs in small (73% forage fish) and large fish (27% "large" fish such as largemouth bass and brown bullhead based on information in USEPA (1993)) and surface water, the hazard index for mercury compared to the NOAEL dose was 4. The hazard index compared to the LOAEL dose was 0.4. The hazard indices for the rest of the COPCs were less than 1. This model also assumed that great blue heron were foraging onsite from early March to late November (Illinois, 2000) and that a heron's foraging area is approximately the size of the Borrow Pit Lake (a foraging area of 0.6 to 8.4 hectares as reported in USEPA (1993) compared to 4.9 hectares of the Borrow Pit Lake). When a larger foraging area was used (3-mile radius that is likely to be more representatative of herons known to nest in the area (East St. Louis and Alorton, Illinois), hazard indices were less than 1. When maximum concentrations were used in the model and the herons were assumed to forage on site year round, only mercury had a hazard index greater than one. These hazard indices greater than one for mercury are due to concentrations in brown bullhead and small minnows that are higher than in fish from the

reference areas. This indicates some potential risk to piscivorous birds due to mercury in fish tissue at the Borrow Pit Lake. The potential risk may be due to regional conditions, as concentrations of mercury in Borrow Pit Lake fish were within the range of concentrations detected in Illinois fish (although higher than site reference areas).

-1

7.2.5 Measure of effect 2e: Concentration of COPCs in benthic macroinvertebrates

Purpose and Rationale. Waterfowl (such as the mallard) and mammals (such as the muskrat and river otter) eat benthic macroinvertebrates as a portion of their diet. This measure of effect evaluates this potential route of exposure.

Approach: The COPC levels measured in benthic macroinvertebrates are used in a multipathway exposure model for the mallard, muskrat, and river otter that incorporates concentrations in sediment, water, and food. Exposures of waterfowl and mammals within Dead Creek and the Borrow Pit Lake are compared to 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

Evaluation: Tables 7-22 and 7-23 compare maximum and average concentrations of COPCs detected in shrimp and clams, respectively, from the Borrow Pit Lake to concentrations in shrimp and clams from reference areas. Only one composite shrimp sample was collected from the Borrow Pit Lake. It had higher concentrations of antimony, silver, and dioxin than shrimp samples from the reference areas. The clam samples from Borrow Pit Lake had higher concentrations of MCPP, arsenic, silver, heptachlor, methoxychlor, two phthalates, and dioxin than clam samples from the reference areas.

Concentrations of COPCs detected in shrimp from the Borrow Pit Lake were used in food chain models to evaluate potential risks to mallards; concentrations detected in clams were used to evaluate potential risks to muskrat and river otter. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-19.

Food chain modeling indicated that the average doses of COPCs that muskrats receive from ingesting clams, sediment, and surface water from the Borrow Pit Lake do not exceed NOAEL or LOAEL concentrations, with the exception of aluminum which was detected in clams and sediment from the Borrow Pit Lake at concentrations lower than the reference areas. The hazard indices for aluminum were 40 and 4 compared to the NOAEL and LOAEL using average concentrations and 50 and 5 using maximum concentrations. Surface water concentrations of aluminum did not contribute appreciably to these hazard indices.

For the river otter eating clams from the Borrow Pit Lake, average concentrations of COPCs in clam tissue, sediment, and surface water resulted in hazard indices less than 1. This model used average concentrations of COPCs to represent an otter integrating exposure different locations within the Borrow Pit Lake. It also assumes that the Borrow Pit Lake comprises

approximately 0.01 of a river otter's foraging area. When maximum concentrations were used and the river otter was assumed to forage only in the Borrow Pit Lake, the hazard index exceeded 1 for aluminum. Aluminum concentrations in Borrow Pit Lake fish and sediment are less that those in the reference areas.

Food chain modeling for mallards ingesting shrimp from Dead Creek Section F resulted in hazard indices less than 1 for each COPC using both average and maximum concentrations.

The results of the food chain modeling indicate that wildlife that consume macroinvertebrates (clams and shrimp) from the Borrow Pit Lake do not experience risk greater that which could occur at a reference area.

7.3 Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

The assessment uses an exposure model to evaluate different routes of exposure including ingestion of water, sediment and fish.

7.3.1 Measure of effect 3a: Concentration of COPCs in fish for use in evaluating exposure via the food chain

Purpose and Rationale. Bald eagle may use fish in Dead Creek and associated wetlands as food. The presence of COPCs in fish could be a source of exposure to this species. This measure of effect examines this potential route of exposure.

Approach: This endpoint is evaluated via an exposure model for the bald eagle. The assessment compare exposures to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

Evaluation: Tables 7-2 and 7-3 compare maximum and average concentrations of COPCs detected in largemouth bass and brown bullhead, respectively, from the Borrow Pit Lake to concentrations in fish from reference areas.

As stated in Section 7.2.4, concentrations of some COPCs in largemouth bass and brown bullhead samples from the Borrow Pit Lake were higher than in fish samples from reference areas. In largemouth bass, dicamba, MCPA, chromium, zinc, DDE, gamma chlordane, heptachlor, di-n-butylphthalate, and dioxin TEQs were at higher concentrations in the Borrow Pit Lake than in the reference areas. In brown bullheads, dichloroprop, chromium, mercury, DDE, alpha chlordane, heptachlor, bis(2-ethylhexyl)phthalate and dioxin TEQs were at higher concentrations in the Borrow Pit Lake than in reference areas.

Concentrations of COPCs detected in fish the Borrow Pit Lake were used in food chain

models to evaluate potential risks to the bald eagle. The details of the food chain model are discussed in Appendix E. Results are summarized in Table 7-19.

The food chain model for the bald eagle using average concentrations in large fish and surface water did not result in hazard indices for any COPC greater than 1. This model assumed that eagles overwinter in the vicinity of the site from October through March and that the Borrow Pit Lake comprises about 0.003 of the eagles foraging area (5 hectares vs. 1880 hectares foraging area; USEPA, 1993). Using maximum concentrations in large fish and surface water and assuming that the eagle forages year round and only at the Borrow Pit Lake resulted in a hazard index for mercury of 5 compared to the NOAEL dose. However, even for this conservative case, the estimated exposure dose is still less than the LOAEL value. The maximum mercury concentration in largemouth bass and brown bullhead combined was measured in one composite brown bullhead sample that was approximately 5 times higher than mercury concentrations from other large fish from the Borrow Pit Lake. The other samples of largemouth bass and brown bullhead had concentrations similar to the reference area.

7.4 Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek

7.4.1 Measure of effect 4a: COPC concentrations in soil samples from the creek bank and floodplain as compared to applicable soil screening levels for protection of wildlife, plants, and soil dwelling invertebrates

Purpose and Rationale. Soil concentrations provide a measure of exposure, and screening level criteria indicate levels above which effects may occur. This measure of effect evaluates the potential for soil concentrations of COPCs in Dead Creek banks and floodplains to cause adverse effects.

Approach: The assessment compares measured concentrations of total contaminant concentrations in soils to existing benchmarks as summarized in Efroymson et al. (1997).

These soil benchmarks are developed from values that represent a LOAEL for plants, soil invertebrates, and wildlife (birds and mammals). Efroymson et al. (1997) selected the lowest of the available values as a soil benchmark.

Discussion: Table 7-24 compares concentrations detected in Dead Creek floodplain surface soils in both developed and undeveloped areas to soil screening benchmarks and a background concentration. The floodplain soil concentrations are represented by either the maximum concentration detected in surface soil (from a depth of 0 to 6 inches) or the 95% upper confidence limit (UCL) on the mean. There were many more surface soil samples than

sediment or surface water samples, and therefore a 95% UCL could be calculated for surface soil. The background soil concentrations are represented as twice the average background soil concentration. The background data set comes from three soil samples. As shown on Table 7-24, soil constituents fall into several categories including:

- 1) constituents for which the maximum site concentrations exceed the benchmark (indicated in yellow on Table 7-24);
- 2) constituents for which the lower of the site maximum or 95% UCL on the mean exceeds background (or the constituent was not detected in background soil) and no benchmark is available (indicated in green on Table 7-24);
- 3) constituents for which the maximum site concentration is less than the benchmark;
- 4) constituents for which the lower of the site maximum or 95% UCL on the mean is within background and there is no benchmark;
- 5) constituents detected at a frequency of less than 5%; and constituents of low toxicity.

The first category represents constituents that are present in soil in at least one location at concentrations greater than a published ecological toxicity benchmark. Constituents in this category are 2,3,7,8-TCDD TEQs, total PCBs, arsenic, barium, cadmium, copper, lead, molybdenum, nickel, selenium, thallium, vanadium, and zinc. Table 7-25 identifies individual soil sample locations that exceed the benchmark. Soil sample locations are shown on Figure 5-3. Note that many of the identified locations have concentrations slightly above the benchmark and within background. Constituents that exceed both background and the benchmark include: 2,3,7,8-TCDD TEQs (1 location out of 29 surface soil sampling locations); arsenic (1 location out of 65 surface soil sampling locations); barium (1 location out of 65 surface soil sampling locations); copper (2 locations out of 65); lead (2 locations out of 65); molybdenum (2 locations out of 65); nickel (1 location out of 65); selenium (16 locations out of 65); thallium (4 locations out of 65); vanadium (1 location out of 65); and zinc (3 locations out of 65). Detection limits for selenium in the remaining 49 samples were above the benchmark of 0.21 mg/kg.

Selenium was not detected in background soil. The Illinois Environmental Protection Agency (IEPA, 1994) reports a background range of less than 0.12 mg/kg to 2.6 mg/kg selenium in soils within metropolitan statistical areas. The average reported background concentration in these areas is 0.58 mg/kg. Therefore, the selenium concentrations detected in site surface soil are likely to be within the range of background, although selenium was not detected in the three site-specific background samples.

Few soil concentrations exceed both soil benchmarks and background. These sample locations are scattered throughout the Dead Creek floodplain and do not represent a spatial or geographical pattern. The uncertainty in this screening is due to the lack of soil benchmarks for many compounds and, in the case of selenium, detection limits greater than benchmarks.

The second category represents constituents that are present in floodplain soils at concentrations above background, but for which little toxicity information is available. Many constituents fall into this second category (including herbicides, pesticides, SVOCs (mainly PAHs), and VOCs), because soil benchmarks are available for only a few of the compounds detected in soil.

The third, fourth, and fifth categories represent constituents that are unlikely to present an ecological risk because the maximum concentration is less than a conservative benchmark, concentrations are consistent with background, low frequency of detection (less than 5%), or low toxicity (calcium, magnesium, and potassium).

8.0 WEIGHT OF EVIDENCE DISCUSSION OF ECOLOGICAL RISK

The assessment endpoints used in this evaluation are:

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates);

Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams);

Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site; and

Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek.

This section weighs the results of each measure of exposure or effect and draws conclusions with regard to each assessment endpoint. Table 8-1 demonstrates this weight of evidence evaluation.

8.1 Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates)

Several COPCs including herbicides, metals, PCBs, pesticides, phthalates, PAHs, and dioxins were detected in fish from the Borrow Pit Lake at concentrations higher than those detected in fish from reference areas indicating that fish at the site have a higher exposure. Of the COPCs detected in fish tissue, only mercury was detected at concentrations exceeding a toxicity benchmark. Mercury concentrations exceeded a toxicity benchmark in one out of three brown bullhead samples and one out of three small forage fish (minnow) samples, but not in largemouth bass. This indicates that there is some potential for adverse effects on fish due to mercury at the site. Mercury was also present in site sediment at concentrations above those detected in reference areas.

The only COPCs in surface water that exceeded available criteria or guidelines were aluminum, barium, iron, and manganese. Concentrations of these metals were lower than in reference area water bodies. Therefore, concentrations of COPCs in surface water do not pose a risk to fish in the Borrow Pit Lake at levels above those that exist in reference areas.

Results of the evaluation of the benthic community indicated that benthic invertebrates are likely affected by poor habitat conditions in Dead Creek and the Borrow Pit Lake. Although concentrations of some COPCs were elevated above sediment concentrations in reference water bodies and above sediment guidelines for the protection of benthic invertebrates, the benthic community was similarly impaired at both the site and the reference areas. Results of toxicity testing were inconclusive and indicated toxicity in site sediment and reference area sediment. The prey base for fish is impaired in the Borrow Pit Lake (and Dead Creek Section F) but only to a similar degree as is present in reference areas. Therefore, site-related chemicals are not considered to pose a risk to the prey base as compared to other areas.

Some species of fish in the Borrow Pit Lake may be at risk due to body burdens of mercury elevated over a toxicity benchmark. However, fish in many regions of the United States and Canada, in general, and Mississippi River basin in Illinois, in particular, have mercury concentrations in the same range and are not near known sources of mercury contamination. In general, fish at the site are at risk due to poor habitat conditions that are no different from conditions in other water bodies in the region. These poor habitat conditions include fluctuating water levels and a reduced prey base due to silty, muddy substrate. Potential risks due to site-related chemicals to fish within the Borrow Pit Lake appear to be negligible to small and are unlikely to influence the sustainability of these populations.

8.2 Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams)

Wildlife species presence and use of the habitat appears to be similar to other water bodies in the region.

Plants in Dead Creek Section F have higher concentrations of some COPCs (metals, PAHs, one herbicide, and two pesticides) than plants from the reference areas. This indicates that plants and wildlife that eat plants (mallards and muskrats) may be exposed to these COPCs to a higher degree at the site. Food chain modeling indicated that these higher exposures do not result in risk to mallards or muskrats.

Concentrations of COPCs in surface water do not pose a risk to wildlife.

Some COPCs are present at higher concentrations in fish from the Borrow Pit Lake than in fish from reference water bodies. These COPCs include herbicides, metals, PCBs, pesticides, phthalates, PAHs, and dioxins. Food chain modeling indicated that these higher exposures do not result in risks to river otter that eat fish. It did indicate potential risks above a NOAEL dose (but below a LOAEL dose) to great blue heron that eat fish from the Borrow Pit Lake.

4

This potential risk is due to mercury levels in some fish species, if herons forage mainly in the Borrow Pit Lake. If herons forage over a wider area (which is likely since the nesting areas are at least one mile away), no risk due to mercury is estimated (or the risk due to mercury is at a background level).

Concentrations of some COPCs are higher in shrimp and clams from the Borrow Pit Lake than from reference water bodies. This indicates a higher degree of exposure of these organisms and wildlife that eat them. Food chain modeling indicated that these increased exposures do not result in risks to mallards, muskrats, or river otter.

Wildlife appear to use Dead Creek and the Borrow Pit Lake to the same degree as other water bodies in the region. The only potential risk due to COPCs at the site is to piscivorous birds due to mercury in fish. This potential for risk is considered to be low because the mercury dose in fish exceeds a no effects level, but not a level associated with effects on birds. In addition, it is similar to levels measured in fish in many regions of the U.S. and Canada and throughout the Mississippi River basin in Illinois.

8.3 Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

Food chain modeling did not predict risks to bald eagles that may eat fish from the Borrow Pit Lake.

8.4 Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek

The measure of effect used to evaluate this assessment endpoint was a screening of floodplain surface soil concentrations against ecological benchmarks and background soil concentrations. This screening indicated that some COPCs exceeded ecological benchmarks and background. However, only a few locations had COPC concentrations that exceeded both the ecological benchmark and background. These locations were scattered over the floodplain and did not exhibit a spatial pattern. Therefore, although a conservative screening analysis indicated that there may be some risks to terrestrial wildlife in the floodplain of Dead Creek, the scattered nature of the background exceedances does not indicate wide spread risks.

9.0 DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS

To insure that uncertainties in the assessment have been identified and appropriately addressed, this section presents potential sources of uncertainty. This section of the report identifies the major sources of uncertainty along with actions that have been taken to manage this uncertainty within the assessment. The three primary categories of uncertainty in this assessment are exposure assessment uncertainty, field observation uncertainty and food chain modeling uncertainty.

9.1 Exposure Assessment Uncertainty

A variety of measurement endpoints are selected to reduce the uncertainty inherent in the evaluation of exposure in complex ecological systems. While it is impossible to evaluate the condition of every species and local population using the site, it is important to select species that may use the site, are representative of larger feeding guilds, and have a high potential for exposure. Laboratory assessment of tissue concentrations in plants, fish and invertebrates are not expected to include a great deal of uncertainty.

biasel ighista

9.2 Field Observation Uncertainty

Field observations occurred over a limited amount of time in 1996 and 1999. In 1999, severely low water levels in Dead Creek, the Borrow Pit Lake, and the reference water bodies, effected ecological conditions.

Eased AV

9.3 Food Chain Modeling Uncertainty

There is uncertainty in the estimates of ingestion rates for wildlife. We rely on studies that present conservative estimates of quantity of food, water and soil in each species' diet (USEPA 1993; Beyer et al. 1994). For example, we assume that some species incidentally ingest sediment during feeding

The actual diets of the species analyzed in the food chain models include a larger diversity of food types than represented in the food chain models. The assessment relied on site data (plants, clam, fish, and shrimp) where possible and representative food types (both plant and animal tissue). It cannot capture each unique diet item in the diet of wildlife..

The quantity of sediment that an animal ingests while consuming plants or invertebrates is uncertain. The assumptions used in the food chain models are conservative to minimize the effect of the uncertainty. For certain COPCs, sediment is a significant component of the total dose. In certain cases, and for certain compounds, tissue concentrations represent a significant component of the total dose.

The assessment relies on two sources for wildlife ingestion and exposure information, USEPA (1993) and Beyer et al. (1994). The wildlife soil ingestion rates provided by Beyer et al. (1994) are based on a percentage of the dry mass of food ingested per day. The food ingestion rates and the concentrations in food are provided on a wet weight basis. To apply the Beyer et al (1994) values for soil, we adjust the food ingestion rate to a dry weight basis (assume moisture content of invertebrates=80%, and moisture content of plants=70%) and then apply the Beyer et al. (1994) values to obtain the dry soil ingestion rate in grams per gram body weight per day.

The development of toxicological benchmarks involves uncertainty because they are derived from laboratory studies and must be extrapolated to the field. In many cases, extrapolations are also made between species. This is standard practice in ecological risk assessment and yields benchmarks that are likely to be conservative. Testing is often rigorous, however the tests are generally performed on standard laboratory species and then the results are adjusted for other species based on body weight. While the species assessed are not standard laboratory species, they are species with readily available toxicological benchmarks.

To capture uncertainty in the food chain assessment, this assessment calculated hazard indices using both a No Observed Adverse Effect Level (NOAEL) and the Lowest Observed Adverse Effect Level (LOAEL). In a few cases, a hazard index using the NOAEL exceeds one, while the hazard index using the LOAEL is less than one. The uncertainty is bounded between the two toxicological benchmarks.

10.0 SUMMARY AND CONCLUSIONS

The baseline ecological risk assessment for Sauget Area I in Sauget and Cahokia, Illinois, addresses Dead Creek surface water and sediment and surficial floodplain soils. The assessment follows the work plan for the project. The ecological risk assessment is restricted to a portion of Dead Creek Segment F and the Borrow Pit Lake. Creek Segments B through the upper portion of F are subject to a Unilateral Administrative Order issued by the USEPA on May 31, 2000 to Monsanto Company and Solutia Inc. (Docket No. V-W-99-C-554) to remove sediments from Sauget Area 1 Creek Segments B and Site M and Creek Segments C, D and E, which are located in Sauget and Cahokia, Illinois.

Assessment endpoints and measures of effects were selected in the project work plan. The assessment endpoints are:

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates);

Survival, growth, and reproduction of local populations of aquatic wildlife represented by mallard duck, great blue heron, muskrat, and river otter (incorporates the assessment of benthic macroinvertebrates including shrimp and clams);

Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site; and

Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek.

should list out all coursens

Results indicate that:

Some species of fish in the Borrow Pit Lake may be at risk due to body burdens of mercury elevated over a toxicity benchmark. The concentrations measured in Borrow Pit Lake fish are within the range measured in the Mississippi River Basin in Illinois. In general, fish at the site are at risk due to poor habitat conditions that are no different from conditions in other water bodies in the region. These poor habitat conditions include fluctuating water levels and a reduced prey base due to silty, muddy substrate. Mercury was the only COPC detected in whole fish tissues that presented a potential risk to fish. Surface water did not pose a risk to fish or other aquatic organisms above risks present in other water bodies in the region based on a comparison of concentrations to Illinois standards and federal criteria. The benthic invertebrate prey

base of fish was impaired based on benthic community analysis and toxicity testing, but this impairment was similar to that observed in other water bodies in the region unaffected by industry. The impairment is due in part to silty bottom conditions, fluctuating water levels and possibly due to background levels of agricultural chemicals.

Wildlife appear to use Dead Creek and the Borrow Pit Lake to the same degree as other water bodies in the region. The only potential risk due to COPCs at the site is to piscivorous birds due to consumption of mercury in fish. This potential for risk is considered to be low because the mercury dose in fish exceeds a no effects level, but does not exceed the level associated with adverse effects on birds. This potential risk is not indicated if heron are assumed to forage over a three-mile radius. Food chain modeling indicated that other wildlife that feed at Dead Creek Section F or the Borrow Pit Lake (muskrats, river otter, and mallards) are not at risk due to ingestion of COPCs in food items (plants, clams, fish, and shrimp), sediment, or surface water.

Bald eagles, a federally-listed endangered species, overwinter in the Mississippi River Valley to the north of the site. Bald eagles attempted to nest near the site in 1993 and 1994, but have not been observed near the site recently.) Food chain modeling did not predict risks to bald eagles that may eat fish from the Borrow Pit Lake.

A screening of floodplain surface soil concentrations against ecological benchmarks and background soil concentrations indicated that some COPCs exceeded ecological benchmarks and background. However, only a few locations had COPC concentrations that exceeded both the ecological benchmark and background. These locations were scattered over the floodplain and did not exhibit a spatial pattern. Therefore, although a conservative screening analysis indicated that there may be some risks to terrestrial wildlife in the floodplain of Dead Creek, the scattered nature of the background exceedances does not indicate wide spread risks.

11.0 REFERENCES

Barbour, M.T. J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Beyer, W.N., E.E. Connor, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. J. Wildl. Manage. 58: 375-382.

Borgmann, U. and D.M. Whittle. 1992. DDD, PCB, and mercury concentrations trends in Lake Ontario rainbow smelt (Osmerus mordax) and slimy sculpin (Cottus cognatus): 1977-1988. J. Great Lakes Res., 18: 298-308.

Chapman, J.A., and G.A. Feldhamer. 1982. Wild Mammals of North America. Johns Hopkins University Press, Baltimore, MD and London.

Collins, Randall. 2001. Personal Communication with Menzie-Cura & Associates, Inc. Illinois Department of Natural Resources, Natural Heritage Inventory, Springfield, Illinois.

Efroymson., R.A., G.W. Suter, B.E. Sample, and D.S. Jones. 1997. Preliminary Remediation Goals for Ecological Endpoints. Oak Ridge National Laboratory for the U.S. Department of Energy. ES/ER/TM-162/R2.

Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen, and J.C. Leiter. 1996. Low levels of dietary methymercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum), Aquatic Toxicology 35, 265-278.

Harris, C. J. 1968. Otters: a study of the recent Lutrinae. London, U.K.: Weidenfield & Nicolson.

Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. Great Lakes Entomologist. 20: 31-39.

Illinois, 1999. Title 35 of the Illinois Administrative Code, Subtitle C, Chapter I, Part 302 Water Quality Standards, Subpart B.

Illinois, 2000. Illinois Natural History Survey Website. www.inhs.uiuc.edu.

Illinois Environmental Protection Agency, 1994. A Summary of Selected Background

Conditions for Inorganics in Soil. IEPA/ENV/94-161.

Jarvinen, A.W. and G.T. Ankley. 1999. Linkage Effects to Tissue Residues: Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals. Pensacola FL, Society of Environmental Toxicology and Chemistry Press, 364pp.

Khera, K.S. and W.P. McKinley. 1972. Pre- and postnatal studies of 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and their derivatives in rats, Toxicology and Applied Pharmacology, 22, 14-28.

MacDonald, D.D. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1 – Development and Evaluation of Sediment Quality Assessment Guidelines, November 1994.

MacDonald, D.D., D.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39: 20-31.

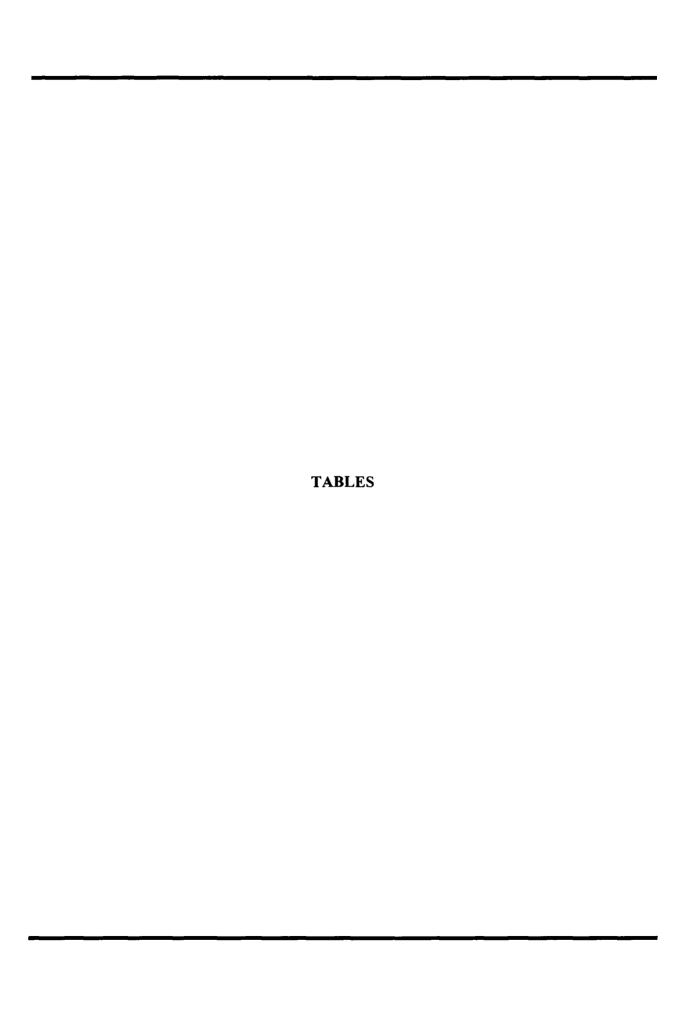
Mathers, R.A. and P.H. Johansen. 1985. The effects of feeding ecology on mercury accumulation in walleye (*Stizostedion vitreum*) and pike (*Esox lucius*) in Lake Simcoe. Can. J. Zool., 63: 2006-2012.

Menzie, C.A., M. Hope Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky, P. Tyler. 1996. Special report of the Massachusetts weight-of-evidence workgroup: A weight-of-evidence approach for evaluating ecological risks. *Human and Ecological Risk Assessment:* (HERA): 2(2)277-304.

Nagy, K.A. 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds". Ecological Monographs, 57(2), 1987, pp 111-128

O'Brien & Gere Engineers, Inc. (OBG). 2000. Soil, Ground Water, Surface Water, Sediment, and Air Sampling Field Sampling Report, Sauget Area 1, Remediation Technology Group, Solutia Inc., St. Louis, MO.

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.


Sample, B.E., Opresko, D.M., Suter, G.W., II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. National Laboratory Health Research Division, Oak Ridge, TN.

Simonin, H. A., S.P. Gloss, C.T. Driscoll, C.L. Schofield, W.A. Krestser, and J. Symula. 1994. Mercury in yellow perch from Adirondack drainage lakes (New York, US). In: C.J.

- Watras, ed., Mercury Pollution: Integration and Synthesis. Lewis Publishers, Boca Raton, FL. pp. 457-469.
- Suter, G.W. II, and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effect on Aquatic Biota: 1996 Revision. Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee, ES/ER/TM-96/R2.
- Svihla, A.; Svihla, R. D. 1931. The Louisiana muskrat. J. Mammal. 12: 12 –28.
- U.S. Environmental Protection Agency. (USEPA). 1999a. National Recommended Water Quality Criteria Correction, Office of Water, EPA 82-2-Z-99-001 (April 1999).
- U.S. Environmental Protection Agency. (USEPA). 1999b. The National Survey of Mercury Concentrations in Fish, Database Summary 1990-1995. US Environmental Protection Agency, Office of Water, EPA-823-R-99-014.
- U.S. Environmental Protection Agency. (USEPA). 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, Washington, DC. EPA 630-R-95/002F.
- U.S. Environmental Protection Agency. (USEPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. Environmental Response Team. Edison, NJ. EPA 540-R97-006.
- U.S. Environmental Protection Agency. (USEPA). 1993. Wildlife Exposure Factors Handbook. Volume I. USEPA Office of Research and Development. EPA/600/R-93/187a.
- Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X.R., Liern, A.K.D., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F, and Zacharewsk, T. 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environmental Health Perspectives, Vol. 106, Number 12, pp. 775-792.

Vermont Agency of Natural Resources. 1990. A compendium of fish tissue contaminant data for Vermont and adjoining waters. Department of Environmental Conservation, Agency of Natural Resources, Vermont.

World Health Organization (WHO) European Centre for Environment and Health. 1998. Executive Summary: Assessment of the Health Risk of Dioxins: Re-evaluation of the Tolerable Daily Intake (TDI). WHO Consultation, May 25-29, 1998, Geneva, Switzerland.

TABLE 4-1 ASSESSMENT ENDPOINTS AND ASSOCIATED MEASURES OF EFFECT DEAD CREEK AND THE BORROW PIT LAKE SAUGET AREA I

Assessment Endpoint 1: Sustainability of warm water fish

Measure of effect 1a: body burdens of COPCs in selected fish species as a measure of exposure (compared to body burdens in fish from reference areas) and effects (compared to benchmark values).

Measure of effect 1b: COPC concentrations in surface water as compared to applicable water quality criteria for protection of fish and wildlife.

Measure of effect 1c: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish:

Concentration of COPCs in sediment;

Field assessment of benthic macroinvertebrate community structure;

Sediment toxicity tests.

Assessment Endpoint 2: Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the, mallard duck, great blue heron, muskrat, and river otter

Measure of effect 2a: Wildlife species composition and habitat use.

Measure of effect 2b: Concentration of COPCs in aquatic/marsh plants for use in evaluating exposure via the food chains for mallard duck and muskrat.

Measure of effect 2c: Concentration of COPCs in surface waters in comparison to wildlife benchmarks.

Measure of effect 2d: Concentration of COPCs in fish for use in evaluating exposure via the food chain for great blue heron and river otter.

Measure of effect 2e: Concentration of COPCs in macroinvertebrates (shrimp and/or clams) for use in evaluating exposure via the food chain for mallard duck, river otter and muskrat.

Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population that may overwinter near the site

Measure of effect 3a: Concentration of COPCs in fish for use in evaluating exposure via the food chain.

Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Dead Creek

Measure of effect 4a: Soil screening effect levels for the protection of wildlife, plants, and soil dwelling invertebrates.

Table 5-1 Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

	Site	Illin	iois²	NAWO	Criteria ³	Tier II	/alues ⁴	Oak Ridge	Maximum	Twice Average	Preliminary	
	Maximum	Acute WQ	Chronic WQ		CCC	Secondary	Secondary	Lowest Chronic Value	Detected	of	Screening	Comments
Compounds	Detected'	Standards	Standards				Chronic Value	for All Organisms	Reference ¹	Reference Area	Screening	Continents
										1.0.0.0.007.00		
Herbicides (ug/l)												
2,4,5-T										0.5	out	not detected in sw
2,4,5-TP (Silvex)										0.5	out	not detected in sw
2,4-D										0.5	out	not detected in sw
2,4-DB										0.5	out	not detected in sw
Dalapon			l.,	\						120	out	not detected in sw
Dicamba	<u></u>	l	ļ							1.2	out	not detected in sw
Dichloroprop			l	<u> </u>						6	out	not detected in sw
Dinoseb						l				6	out	not detected in sw
MCPA	l	ļ	<u> </u>							120	out	not detected in sw
MCPP			Ļ	ļ		<u> </u>				120	out	not detected in sw
Pentachlorophenol at pH 7.4			ļ <u>.</u>	13	10		<u></u>		İ	1	out	not detected in sw
Metais/inorganics (mg/l)		· ·-· · ·		 	I	<u> </u>				[
Aluminum	3.4	 	ļ	0.75*	0.087*	I			19.5	26.45	In	greater than criteria
Antimony	1 000		0.40		045	0.18	0.03	 -		0.02	Out	not detected in sw
Arsenic	0.015	0.36	0.19	0.34	_0.15	0.066******	0.0031******		0.017	0.02915	Out	no exceedance
Barlum	0.32		 	 	ļ — — —	0.11 0.035	0.004	 	0.41 0.00083	0.7175	In Out	greater than Tier II
Beryllium	 		0.0021	0.011	0.0046	0.035	0.00066		0.00083	0.0027475	Out	not detected in sw
Cadmium	89	0.024	0.0021	0.011	0.0040	 		116	72	0.005	out	not detected in sw
Calcium	0.0041	3.3/0.016	0.20/0.011	2 4** / 0 016***	0.16**/0.011***	ł		116	0.0225	117.25	Out	low toxicity; nutrient
Chromium	0.0041	3.3/0.016	0.39/0.011	3.4 / 0.016	0.16 70.011	1.5	0.023		0.0225	0.03075 0.0114	Out	no exceedance
Cobalt	0.013	0.037	0.023	0.029	0.018	1.5	0.023		0.0076	0.0114	Out Out	no exceedance
Copper Cyanide, Total	0.012	0.022	0.0052	0.023	0.0052	 			0.0163	0.02455	Out	no exceedance not detected in sw
Iron	8.7	0.022	0.0032	0.022	1				25.5	32.75	In	greater than criteria; less than ref.
Lead	0.02	0.26	0.055	0.22	0.0087				0.032	0.0515	Out	Less than IL criteria
Magnesium	33		0.000		0.0001		 -	82	35	53.5	Out	low toxicity; nutrient
Manganese	1.7	<u> </u>		 		2.3	0.12		2.9	3.95	In	Greater than criteria
Mercury		0.0026	0.0013	0.0014	0.00077	<u>-::</u>	0.0013			0.0002	Out	not detected in sw
Molybdenum	0.004		<u> </u>			16	0.37		0.00655	0.010725	Out	no exceedance
Nickel	0.021			0.91	0.1				0.0245	0.03475	Out	no exceedance
Potassium	7.6							53	11	17	Out	low toxicity; nutrient
Selenium					0.005					0.01	Out	not detected in sw
Silver				0.016		· · · · · · · · · · · · · · · · · · ·	0.00036			0.01	out	not detected in sw
Sodium	24		I					680	23	38	Out	low toxicity; nutrient
Thallium						0.11	0.012			0.01	out	not detected in sw
Vanadium	0.014		·	<u> </u>		0.28	0.02		0.0525	0.08475	Out	no exceedance
Zinc	0.075	1	I	0.23	0.23	l			0.13	0.15175	Out	no exceedance
Fluoride (mg/l)	0.29		ļ	ļ	l				0.38	0.625	Out	no criteria; less than reference
Hardness as CaCO3 (mg/l)	350	L	L	I	L	L			330	512.5	Out	water quality parameter
Ortho-Phosphate-P (mg/l)	0.83	ļ		ļ					0.215	0.2345	Out	water quality parameter
рН	9.7	 	<u> </u>	 	6.5 - 9	 	L 		8.1	15.65	out	water quality parameter
Suspended Solids (mg/l)	160			ļ	L	ļ			700	840	Out	water quality parameter
Total Dissolved Solids (mg/l)	480	 -	ļ		ļ	 			460	735	Out	water quality parameter
Total Phosphorus (mg/l)	1.2			 		ļ			3	3.285	Out	water quality parameter
				(0.04 445555	(
PCB (ug/l)	 	ļ	ļ	ļ	0.014****	ļ					I	
Decachlorobiphenyl	ļ	 		 	·	 				0.5	Out	not detected in sw
Dichlorobiphenyl			ļ—	 	 	·				0.1	Out Out	not detected in sw
Heptachlorobiphenyl		 	 	 		 				0.3	Out	not detected in sw not detected in sw
Hexachlorobiphenyl	ļ	 	+	·	İ						Out	
Monochlorobiphenyl	l	ł	 	 		 		 	 	0.1	Out	not detected in sw not detected in sw
Nonachlorobiphenyl	 	 	+	 		 				0.5	Out	not detected in sw
Octachlorobiphenyl	·	<u> </u>	 	 		- ——			 	0.3	Out	not detected in sw
			1	1	l .	I		l	ι	U.4	լ Ծա	HOLDERCHER III 2M
Pentachlorobiphenyl	 		 							0.2	Out	not detected in sw
Pentachlorobiphenyl Tetrachlorobiphenyl Trichlorobiphenyl										0.2	Out Out	not detected in sw not detected in sw

Tau... 5-1 Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

	Site	Min	ois ²	NAWC	Criteria ³	Tier II	Values ⁴	Oak Ridge	Maximum	Twice Average	Preliminary	
	Maximum	Acute WQ	Chronic WQ	CMC	CCC	Secondary	Secondary	Lowest Chronic Value	Detected	of	Screening	Comments
Compounds	Detected ¹	Standards	Standards		j	Acute Value	Chronic Value	for All Organisms ⁴	Reference ¹	Reference Area		
Pesticides (ug/l)												
4,4'-DDD	ļ					0.19******	0.011*******		<u> </u>	0.1	Out	not detected in sw
4,4'-DDE	.				ļ				0.0015	0.07575	Out	not detected in sw
4,4'-DDT	ļ			1.1	0.001		0.013+		0.0057	0.07785	Out	not detected in sw
Aldrin	.			3					0.004	0.0282	Out	not detected in sw
Alpha Chlordane	1			2.4****	0.0043****				0.013	0.03245	Out	not detected in sw
alpha-BHC	0.001					39*****	2.2*****		0.00155	0.030025	Out	no exceedance
beta-BHC	0.02					39******	2.2******		0.015	0.02325	Out	no exceedance
delta-BHC	0.0022				L	39******	2.2*****		0.007	0.0125	Out	no exceedance
Dieldrin	0.001			0.24	0.056				0.0036	0.05285	Out	no exceedance
Endosulfan I	0.0024			0.22****	0.056****		0.51		0.026	0.0202	Out	no exceedance
Endosulfan II				0.22****	0.056****		0.51		0.000096	0.075048	Out	not detected in sw
Endosulfan sulfate	0.0032						1		0.007	0.03195	Out	no criteria; less than reference
Endrin	0.00095			0.086	0.036				0.0054	0.05294	Out	no exceedance
Endrin aldehyde	0.0032								0.05115	0.100575	Out	no criteria; less than reference
Endrin ketone	0.0027			_		I	1		0.011	0.05785	Out	no criteria; less than reference
Gamma Chlordane	1								0.0031	0.02696	Out	not detected in sw
gamma-BHC (Lindane)	0.0038			0.95	t	1			0.01155	0.012875	Out	no exceedance
Heptachlor	0.0029			0.52	0.0038	0.125	0.0069		0.0035	0.03925	Out	no exceedance
Heptachlor epoxide	0.00096			0.52	0.0038				0.0082	0.01185	out	no exceedance
Methoxychior	0.0000				0.03	 	0.019		-	0.5	Out	not detected in sw
	-			0.73	0.0002		0.0.10		-	5	Out	not detected in sw
Toxaphene	 	 		0.75	0.0002	 			-	 	 	not detected in sw
ev (00 (m)					 	 				 	 	
SVOC (ug/l)					-	700	110			10	Out	not detected in my
1,2,4-Trichlorobenzene	 					260	14			10	Out	not detected in sw
1,2-Dichlorobenzene		 -					71			10	Out	not detected in sw
1,3-Dichlorobenzene						630			ļ			not detected in sw
1,4-Dichlorobenzene					ļ	180	15			10	Out	not detected in sw
2,2'-Oxybis(1-Chloropropane)	<u> </u>						ļ			10	Out	not detected in sw
2,4,5-Trichlorophenol	<u> </u>	L				 		ļ		10	Out	not detected in sw
2,4,6-Trichlorophenol	ļ				·					2.1	Out	not detected in sw
2,4-Dichlorophenol	<u> </u>					ł			l	10	Out	not detected in sw
2,4-Dinitrophenol					<u> </u>	ļ				14	Out	not detected in sw
2,4-Dinitrotoluene	. I	_			ļ				ļ — — —	10	Out	not detected in sw
2,6-Dinitrotoluene	1					<u> </u>				10	Out	not detected in sw
2-Chloronaphthalene					L	ļ				10	Out	not detected in sw
2-Chlorophenol						<u> </u>	<u> </u>			10	Out	not detected in sw
2-Methylnaphthalene				l	l	<u> </u>				10	Out	not detected in sw
2-Methylphenol (o-cresol)						230	13		l	10	Out _	not detected in sw
2-Nitroaniline	1					I				50	Out	not detected in sw
2-Nitrophenol								I		10	Out	not detected in sw
3,3'-Dichlorobenzidine	1	1							I	20	Out	not detected in sw
3-Methylphenol/4-Methylphenol	 	1				1				10	Out	not detected in sw
3-Nitroaniline	+	 -	<u> </u>			1				50	Out	not detected in sw
	 					 	-			13	Out	not detected in sw
4,6-Dinitro-2-methylphenol	 	 		l — — —		 	1.5			1	Out	not detected in sw
4-Bromophenylphenyl ether	+	 	 		 	 	· · · · · · · · · · · · · · · · · · ·	 	1	10	Out	not detected in sw
4-Chloro-3-methylphenol	 	 	 	 	·	1	 	· · · · · · · · · · · · · · · · · · ·		20	Out	not detected in sw
4-Chloroaniline	 	ļ	 	}	+	 	 	 	 	10	Out	not detected in sw
4-Chiorophenylphenyl ether	- 	 			+		<u> </u>		 	50	Out	not detected in sw
4-Nitroaniline	 		-	l ———	 	1200	300	 	ł	50	Out	not detected in sw
4-Nitrophenol			 		 	1200	300			10	Out	not detected in sw
Acenaphthene		 		l		 	 		 			
Acenaphthylene	J		L	l	 -	 			 	10	Out	not detected in sw
Anthracene	<u></u>	l		<u> </u>	ļ	13	0.73	<u> </u>	 	10	Out	not detected in sw
Benzo(a)anthracene	1	<u> </u>		ļ	<u> </u>	0.49	0.027	ļ. —.	 	10	Out	not detected in sw
Benzo(a)pyrene		l	L	L	1	0.24	0.014	L		10	Out	not detected in sw
Benzo(b)fluoranthene		l		l			L		ļ <u> </u>	10	Out	not detected in sw
Benzo(g,h,i)perylene							l			10	Out	not detected in sw
Benzo(k)fluoranthene					1	I	1		.	10	Out	not detected in sw
I Denzouk indorandiene										10	Out	

Table 5-1 Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

·	Site	Illine	ois ²	NAWQ	Criteria ³	Tier II	Values ⁴	Oak Ridge	Maximum	Twice Average	Preliminary	
	Maximum Detected ¹	Acute WQ	Chronic WQ	CMC	ccc	Secondary	Secondary	Lowest Chronic Value	Detected	of	Screening	Comments
Compounds	Detected ¹	Standards	Standards			Acute Value	Chronic Value	for All Organisms ⁴	Reference ¹	Reference Area		
bis(2-Chloroethyl)ether										10	Out	not detected in sw
bis(2-Ethylhexyl)phthalate						27	3		l	1.8	Out	not detected in sw
Butylbenzylphthalate Carbazole							19			10	Out	not detected in sw
Chrysene					 					10	Out	not detected in sw
Di-n-butylphthalate						190	35		ļ_ 	10	Out	not detected in sw
Di-n-octylphthalate						- 190-		708		10	Out	not detected in sw
Dibenzo(a,h)anthracene					 	 		708	 	10	Out	not detected in sw
Dibenzofuran						66	3.7			10	Out	not detected in sw
Diethylphthalate						1800	210			10	Out	not detected in sw
Dimethylphthalate						1000	210			10	Out Out	not detected in sw
Fluoranthene	0.7					 		15		10	Out	not detected in sw
Fluorene						70	3.9		 -	1 10		no exceedance
Hexachlorobenzene					 		3.9			10	Out Out	not detected in sw
Hexachlorobutadiene						 -				10	Out	not detected in sw
Hexachlorocyclopentadiene										10	Out	not detected in sw
Hexachloroethane				·	 	210	12			1.9	Out	not detected in sw not detected in sw
Indeno(1,2,3-cd)pyrene						-210	12		 	1.9	Out	not detected in sw
Isophorone						·			 	10	Out	not detected in sw
N-Nitroso-di-n-propylamine				· · · · · · · · · · · · · · · · · · ·		+			ł	10	Out	not detected in sw
N-Nitrosodiphenylamine			<u> </u>			3800	210		 	5	Out	not detected in sw
Naphthalene						190	12			10	Out	not detected in sw
Nitrobenzene							'2			3.5	Out	not detected in sw
Pentachiorophenol										5.5	Out	not detected in sw
Phenanthrene	0.7				ļ			200	-	10	Out	no exceedance
Phenol	<u> </u>				 	 				10	Out	not detected in sw
Pyrene			-						ļ ————·	10	Out	not detected in sw
ryrene		 			ł·					 		not obtected in sw
VOC (ug/l)						 -				 		
1,1,1-Trichloroethane						200	11			5	Out	not detected in sw
1.1.2.2-Tetrachloroethane		<u> </u>				2100	610			5	Out	not detected in sw
1,1,2-Trichloroethane		l				5200	1200			5	Out	not detected in sw
1,1-Dichloroethane						830	47			5	Out	not detected in sw
1.1-Dichloroethene						450	25			5	Out	not detected in sw
1,2-Dichloroethane						8800	910		i	5	Out	not detected in sw
1,2-Dichloropropane									I	5	Out	not detected in sw
2-Butanone (MEK)						240000	14000		i ——	25	Out	not detected in sw
2-Hexanone						1800	99		· · · · · ·	25	Out	not detected in sw
4-Methyl-2-pentanone (MIBK)						2200	170	·	1	25	Out	not detected in sw
Acetone	18				 	28000	1500		38	56.5	Out	no exceedance
Benzene	1.7	ì			Ì	2300	130		-	1.2	Out	less than criteria
Bromodichloromethane		1			1	T			1	5	Out	not detected in sw
Bromoform					t					5	Out	not detected in sw
Bromomethane (Methyl bromide)		<u> </u>				1				9.8	Out	not detected in sw
Carbon disulfide		İ	 			17	0.92		1	5	Out	not detected in sw
Carbon tetrachloride		l				180	9.8		1	5	Out	not detected in sw
Chlorobenzene		l	 		t	1100	64		1	5	Out	not detected in sw
Chloroethane		 			 				<u> </u>	10	Out	not detected in sw
Chloroform		l				490	28			5	Out	not detected in sw
Chloromethane		l				_ 			<u> </u>	10	Out	not detected in sw
cis-1,3-Dichloropropene		t					·		l	1	Out	not detected in sw
Cis/Trans-1,2-Dichloroethene		İ				1	1		1	5	Out	not detected in sw
Dibromochloromethane		<u> </u>			1					5	Out	not detected in sw
Ethylbenzene		1			 	130	7.3		ļ	5	Out	not detected in sw
Methylene chloride (Dichloromethane)					†	26000	2200			4.7	Out	not detected in sw
Styrene				_	†		1			5	Out	not detected in sw
Tetrachloroethene		i			1	830	98		T	5	Out	not detected in sw
Toluene					<u> </u>	120	9.8		i	5	Out	not detected in sw
trans-1,3-Dichloropropene					1					5	Out	not detected in sw
				·		440	47	·	+	2.7	Out	not detected in sw

Comparison of Maximum Surface Water Concentrations to Standards and Guidelines Dead Creek Sector F and Borrow Pit Lake Sauget Area I

	Site	Illin	ois²	NAWQ	Criteria ³	Tier II	Values ⁴	Oak Ridge	Maximum	Twice Average	Preliminary	
	Maximum	Acute WQ	Chronic WQ	CMC	CCC	Secondary	Secondary	Lowest Chronic Value	Detected	of	Screening	Comments
Compounds	Detected ¹	Standards	Standards		<u> </u>	Acute Value	Chronic Value	for All Organisms*	Reference ¹	Reference Area		
Vinyl chloride										10	Out	not detected in sw
Xylenes, Total			ļ			230++ / 32+++	13++ / 1.8+++			5	Out	not detected in sw
Dioxins (ug/l)			 			-	-			ļ		
1,2,3,4,6,7,8,9-OCDD	0.00143		-					· · · · · · · · · · · · · · · · · · ·	0.0074		In	COPC in sediment
1,2,3,4,6,7,8,9-OCDF	0.00026								0.0001955	 	In In	COPC in sediment
1,2,3,4,6,7,8-HpCDD	0.0000692		† <u>-</u>					l	0.000183		In	COPC in sediment
1,2,3,4,6,7,8-HpCDF	0.0000505		 						0.0000445		in	COPC in sediment
1,2,3,4,7,8,9-HpCDF	0.000548		· · · · · · · · · · · · · · · · · · ·						0.0000119	t	ln In	COPC in sediment
1,2,3,4,7,8-HxCDD							-		0.000008	 	In .	COPC in sediment
1,2,3,4,7,8-HxCDF	0.000024		!				† •		- 0.00000		In In	COPC in sediment
1,2,3,6,7,8-HxCDD			1				 	I	0.0000098		In	COPC in sediment
1,2,3,6,7,8-HxCDF	0.0000089	-	†						0.0000072		In	COPC in sediment
1,2,3,7,8,9-HxCDD						1	j		0.0000139	j	In	COPC in sediment
1,2,3,7,8,9-HxCDF					-				0.0000127	i	In	COPC in sediment
1,2,3,7,8-PeCDD			1						0.0000087		In	COPC in sediment
1,2,3,7,8-PeCDF						1			0.0000071		In	COPC in sediment
2,3,4,6,7,8-HxCDF			1								In	COPC in sediment
2,3,4,7,8-PeCDF								1	0.0000059		In	COPC in sediment
2,3,7,8-TCDD			T		T						In	COPC in sediment
2,3,7,8-TCDF			i i						0.00000835		In	COPC in sediment
Total HpCDD	0.000128]			0.0004035		In	COPC in sediment
Total HpCDF	0.0006					.]			0.0001515		In	COPC in sediment
Total HxCDD	0.0000902								0.00006425		ln	COPC in sediment
Total HxCDF	0.000581								0.0000368		ln .	COPC in sediment
Total PeCDD					l			l	0.0000083		ln	COPC in sediment
Total PeCDF									0.00001635	L	ln .	COPC in sediment
Total TCDD]	0.000017	l	In	COPC in sediment
Total TCDF					ļ <u> </u>		ļ		0.000009		In	COPC in sediment
Total TEQ (mammal)	1.901E-05						3.1E-09				In	Greater than Great Lakes Tier I

Notes:

Results in ug/l for organic constituents; mg/l for inorganic constituents

*At pH 6.5 - 9.0, see G, I, and L under National recommended water quality criteria for non priority pollutants

** Chromium III

*** Chromium VI

****For Chlordane

*****For alpha- and beta-Endosulfan

*****For PCBs

******For Arsenic V

******For BHC (other)

For DDD p.p

+For DDT

++For Xylene

+++For m-Xylene

aFor chlordane

Hardness dependent criteria calculated at a hardness of 220 mg/l as CaCO₃ (the lowest detected on site)

¹ A blank in this column indicates compound was not detected in surface water in this location

Tennessee, ES/ER/TM-96/R2.

out = excluded from further consideration in surface water

in = selected as a COPC

² Illinois, 1999. Title 35 of the Illinois Administrative Code, Subtitle C, Chapter I, Part 302 Water Quality Standards, Subpart B.

³ USEPA, 1999. National Recommended Water Quality Criteria - Correction, Office of Water, EPA 82-2-Z-99-001 (April 1999)

⁴ Suter, G.W. II, and C.L. Tsao, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effect on Aquatic Biota: 1996 Revision. Risk Assessment, Health Sciences Research Division, Oak Ridge,

Table 5-2
Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Sauget Area I

	_	Sediment			Maximum	Twice	<u> </u>	
	l	Quality	Florida	Ontario	Detected	Average		
	Maximum	Guidelines ¹	SQAG ²	Guidelines ³	in Reference	of Reference	Preliminary	
Compounds	Detected ⁴	TEC	TEL	LEL	Area ⁴	Area	Screening	
Herbicides (ug/kg)				·			-	
2,4,5-T	·				-		 	
2,4,5-TP (Silvex)							 	
2,4-D	23	·			12	20	IN	No criteria; greater than background
2,4-DB			· 	-			OUT	Not detected in sediment.
Dalapon							OUT	Not detected in sediment.
Dicamba							OUT	Not detected in sediment.
Dichloroprop	·					· 	OUT	Not detected in sediment.
Dinoseb							OUT	Not detected in sediment.
MCPA						·	OUT	Not detected in sediment.
MCPP							OUT	Not detected in sediment.
Pentachlorophenol					1.9		OUT	Not detected in sediment.
Metals mg/kg					İ			
Aluminum	17000				19000	29000	OUT	No criteria; less than background
Antimony	4.7				4	4.2	IN	No criteria; greater than background
Arsenic	19	9.79	7.24	6	8	14.35	IN	Greater than criteria and background
Barium	420				230	415	IN	No criteria; greater than background
Beryllium	0.89				1	1.56	OUT	No criteria; less than background
Cadmium	47	0.99	0.676	0.6	0.65	0.83	IN	Greater than criteria and background
Calcium	17000				18000	27000	OUT	Common nutrient; less than background
Chromium	38	43.4	52.3	26	25	40	IN	Greater than criteria.
Cobalt	13			50	10	17.2	OUT	Less than criteria.
Copper	410	31.6	18.7	16	23	38	IN	Greater than criteria and background
Cyanide, Total				0.1		·	OUT	Not detected in sediment.
Iron	38000			20000	24000	41500	IN	Greater than criteria
Lead	320	35.8	30.2	31	26	44	IN	Greater than criteria and background
Magnesium	6800				6500	10300	OUT	Common nutrient.
Manganese	1400		· · ·	460	770	1415	IN	Greater than criteria.
Mercury	1.1	0.18	0.13	0.2	0.063	0.096	IN	Greater than criteria and background
Molybdenum	3.7		·		0.53	0.89	IN	No criteria; greater than background
Nickel	390	22.7	15.9	16	26	43	IN	Greater than criteria; greater than background
Potassium	2900			-	2600	4200	OUT	Common nutrient
Selenium		-					OUT	Not detected in sediment.
Silver	0.79		0.733	0.5		 	IN	Greater than criteria
Sodium	 			\ ·	(ļ	OUT	Not detected in sediment.
Thallium	†	l					OUT	Not detected in sediment.
Vanadium	51				44	70	OUT	No criteria; less than background
Zinc	3700	121	124	120	96	166	IN	Greater than criteria and background
pH	7.06	<u> </u>		<u> </u>	7.31		OUT	NA
Total Organic Carbon (mg/kg dry weight)	140000				23000	34000	OUT	NA

Table 5-2

Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines

Sauget Area I

		Sediment			Maximum	Twice		
	}	Quality	Florida	Ontario	Detected	Average		
	Maximum	Guidelines ¹	SQAG ²	Guidelines ³	in Reference	of Reference	Preliminan/	
Compounds	Detected ⁴	TEC	TEL	LEL	Area ⁴	Area	Screening	S
PCBs and Pesticides ug/kg	Dotoctod	120	165	LEL	Alea	Alea	Screening	Comment
Decachlorobiphenyl							OUT	Not detected in andimont
Dichlorobiphenyl								Not detected in sediment. Not detected in sediment.
Heptachlorobiphenyl								Not detected in sediment.
Hexachlorobiphenyl	22					-	NA NA	Not detected in Sediment.
Monochlorobiphenyl				-				Not detected in sediment.
Nonachlorobiphenyl		- 						Not detected in sediment.
Octachlorobiphenyl	l							Not detected in sediment.
Pentachlorobiphenyl	66	_ 					NA NA	Not detected in Sedimerk.
Tetrachlorobiphenyl								Not detected in sediment.
Trichlorobiphenyl								Not detected in sediment.
Total PCBs	83	59.8	21.6	70				Greater than criteria; ND in background
4,4'-DDD	3.8	4.82	1.22	8				Greater than criteria; ND in background
4,4'-DDE	11	3.16	2.07	5				Greater than criteria; ND in background
4,4'-DDT*	4.5	4.16	1.19	8				Greater than criteria; ND in background
Total DDT	43	5.28	3.89	7				Greater than criteria; ND in background
Aldrin	4.1	0.20	0.00_	2				Greater than criteria; ND in background
Alpha Chlordane**	5.3	3.24	2.26	7				Greater than criteria; ND in background
alpha-BHC	ļ	0.21		6				Not detected in sediment.
beta-BHC	 			5			OUT	Not detected in sediment.
delta-BHC	0.34	l					IN	No criteria; ND in background
Dieldrin	9.3	1.9	0.715	2			IN	Greater than criteria; ND in background
Endosulfan I	5.7		0.7 10				IN	No criteria; ND in background
Endosulfan II	8.1						IN	No criteria; ND in background
Endosulfan sulfate	9.5						IN IN	No criteria; ND in background
Endosulan sullate	1.7	2.22	 	3			OUT	Less than criteria.
Endrin aldehyde	14		l				IN IN	No criteria; ND in background
Endrin ketone	10	 	ł —- ——	- 		<u> </u>	IN	No criteria; ND in background
	17	3.24	2.26	7				Greater than criteria; ND in background
Gamma Chlordane**	4.8	2.37	0.32	3	 	l	in "	Greater than criteria; ND in background
gamma-BHC (Lindane)	0.93	\	- 0.32	0.3 NEL		 	in	Greater than criteria; ND in background
Heptachlor	5.4	2.47	l	5			in	Greater than criteria; ND in background
Heptachlor epoxide		2.41	<u> </u>	- 3 -	ļ		IN IN	No criteria; ND in background
Methoxychlor	24			ļ		 	OUT	Not detected in sediment.
Toxaphene	<u> </u>	L	L	L	L	L	[001	Inot detected in Sediment.

Table 5-2
Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Sauget Area I

		Sediment			Maximum	Twice	<u> </u>	
	J	Quality	Florida	Ontario	Detected	Average]	
	Maximum	Guidelines ¹	SQAG ²	Guidelines ³	in Reference	of Reference	Deplimino -	
Commonada	Detected ⁴	TEC	TEL		Area ⁴	i	,	
Compounds	Detected	TEC	IEL	LEL	Area	Area	Screening	Comment
SVOCs ug/kg								
1,2,4-Trichtorobenzene							OUT	Not detected in sediment.
1,2-Dichlorobenzene					l		OUT	Not detected in sediment.
1,3-Dichlorobenzene			· ——-				OUT	Not detected in sediment.
1,4-Dichlorobenzene							OUT	Not detected in sediment.
2,2'-Oxybis(1-Chloropropane)							OUT	Not detected in sediment.
2,4,5-Trichlorophenol						l	OUT	Not detected in sediment.
2,4,6-Trichlorophenol							OUT	Not detected in sediment.
2,4-Dichlorophenol					<u></u>		OUT	Not detected in sediment.
2,4-Dinitrophenol							OUT	Not detected in sediment.
2,4-Dinitrotoluene							OUT	Not detected in sediment.
2,6-Dinitrotoluene							OUT	Not detected in sediment.
2-Chloronaphthalene							OUT	Not detected in sediment.
2-Chlorophenol							OUT	Not detected in sediment.
2-Methylnaphthalene			20.2				OUT	Not detected in sediment.
2-Methylphenol (o-cresol)							OUT	Not detected in sediment.
2-Nitroaniline							OUT	Not detected in sediment.
2-Nitrophenol						1	OUT	Not detected in sediment.
3,3'-Dichlorobenzidine		1		}			OUT	Not detected in sediment.
3-Methylphenol/4-Methylphenol							OUT	Not detected in sediment.
3-Nitroaniline	-	1					OUT	Not detected in sediment.
4,6-Dinitro-2-methylphenol		<u> </u>				1	OUT	Not detected in sediment.
4-Bromophenylphenyl ether							OUT	Not detected in sediment.
4-Chloro-3-methylphenol	—					 	OUT	Not detected in sediment.
4-Chloroaniline							OUT	Not detected in sediment.
4-Chlorophenylphenyl ether		 		l		 	OUT	Not detected in sediment.
4-Ontrophenyphenyl ether		·		· · · · · · · · · · · · · · · · · · ·			OUT	Not detected in sediment.
4-Nitrophenol			·			ļ	OUT	Not detected in sediment.
			6.71				OUT	Not detected in sediment.
Acenaphthene		ļ	5.87				OUT	Not detected in sediment.
Acenaphthylene		57.2	46.9	220			OUT	Not detected in sediment.
Anthracene		108	74.8	320		 	OUT	Not detected in sediment.
Benzo(a)anthracene				·				<u> </u>
Benzo(a)pyrene		150	88.8	370	<u> </u>		OUT	Not detected in sediment.
Benzo(b)fluoranthene		}		470			OUT	Not detected in sediment.
Benzo(g,h,i)perylene			 	170	<u> </u>		OUT	Not detected in sediment.
Benzo(k)fluoranthene		 	ļ	240		·	OUT	Not detected in sediment.
bis(2-Chloroethoxy)methane		ļ	ļ			ļ	OUT	Not detected in sediment.
bis(2-Chloroethyl)ether		ļ	<u> </u>	ļ	<u></u>	<u> </u>	OUT	Not detected in sediment.
bis(2-Ethylhexyl)phthalate			182_		ļ	<u> </u>	OUT	Not detected in sediment.
Butylbenzylphthalate			ļ	 		<u> </u>	OUT	Not detected in sediment.
Carbazole		J	L	I	L	<u></u>	OUT	Not detected in sediment.

Table 5-2

Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines

Sauget Area I

		Sediment			Maximum	Twice	<u></u>	
		Quality	Florida	Ontario	Detected	Average		
	Maximum	Guidelines ¹	SQAG ²	Guidelines ³	in Reference	of Reference		
	Detected ⁴	1			Area ⁴	Į.	, ,	
Compounds		TEC	TEL	LEL	Area	Area	Screening	
Chrysene	74	166	108	340			OUT	Less than criteria; ND in background
Di-n-butylphthalate							OUT	Not detected in sediment.
Di-n-octylphthalate							OUT	Not detected in sediment.
Dibenzo(a,h)anthracene		33	6.22	60		<u> </u>	OUT	Not detected in sediment.
Dibenzofuran							OUT	Not detected in sediment.
Diethylphthalate					<u> </u>		OUT	Not detected in sediment.
Dimethylphthalate			<u> </u>				OUT	Not detected in sediment.
Fluoranthene	130	423	113	750			_ IN	Greater than criteria; ND in background
Fluorene		77.4	21.2	190			OUT	Not detected in sediment.
Hexachlorobenzene							OUT	Not detected in sediment.
Hexachlorobutadiene							OUT	Not detected in sediment.
Hexachlorocyclopentadiene							OUT	Not detected in sediment.
Hexachloroethane							OUT	Not detected in sediment.
Indeno(1,2,3-cd)pyrene				200			OUT	Not detected in sediment.
Isophorone							OUT	Not detected in sediment.
N-Nitroso-di-n-propylamine						-	OUT	Not detected in sediment.
N-Nitrosodiphenylamine							OUT	Not detected in sediment.
Naphthalene		176	34.6				OUT	Not detected in sediment.
Nitrobenzene							OUT	Not detected in sediment.
Pentachlorophenol							OUT	Not detected in sediment.
Phenanthrene		204	86.7	560			OUT	Not detected in sediment.
Phenol				<u> </u>			OUT	Not detected in sediment.
Pyrene		195	153	490			OUT	Not detected in sediment.
Total PAHs	130	1610	1684	4000			OUT	Less than criteria
VOCs ug/kg		<u></u>						
1,1,1-Trichloroethane		ļ					OUT	Not detected in sediment.
1,1,2,2-Tetrachloroethane							OUT	Not detected in sediment.
1,1,2-Trichloroethane	· 					=	OUT	Not detected in sediment.
1,1,2-1nchloroethane		[-~	 		† ·	l	OUT	Not detected in sediment.
					1		OUT	Not detected in sediment.
1,1-Dichloroethene		 		 			OUT	Not detected in sediment.
1,2-Dichloroethane			<u> </u>				OUT	Not detected in sediment.
1,2-Dichloropropane		 	 -		40	49.75	OUT	Not detected in sediment.
2-Butanone (MEK)			 		 	70.70	OUT	Not detected in sediment.
2-Hexanone	-	 	\vdash	 	 	 	OUT	Not detected in sediment.
4-Methyl-2-pentanone (MIBK)		 			160	155.75	OUT	Not detected in sediment.
Acetone		l	 		100	100.70	OUT	Not detected in sediment.
Benzene		 			 		OUT	Not detected in sediment.
Bromodichloromethane					ļ	 	OUT	Not detected in sediment.
Bromoform					 		·	
Bromomethane (Methyl bromide)	l	1	L	l	<u> </u>	l	OUT	Not detected in sediment.

Table 5-2
Comparison of Maximum Sediment Concentrations to Sediment Quality Guidelines
Sauget Area I

		Sediment	Florido		Maximum	Twice		
		Quality Guidelines ¹	Florida SQAG ²	Ontario Guidelines ³	Detected	Average	B W . J	
	Maximum	1		1	in Reference	of Reference	Preliminary	
Compounds	Detected ⁴	TEC	TEL	LEL	Area*	Area	Screening	Comment
Carbon disulfide							OUT	Not detected in sediment.
Carbon tetrachloride							OUT	Not detected in sediment.
Chlorobenzene							OUT	Not detected in sediment.
Chloroethane							OUT	Not detected in sediment.
Chloroform							OUT	Not detected in sediment.
Chloromethane							OUT	Not detected in sediment.
cis-1,3-Dichloropropene							OUT	Not detected in sediment.
Cis/Trans-1,2-Dichloroethene							OUT	Not detected in sediment.
Dibromochloromethane							OUT	Not detected in sediment.
Ethylbenzene	11			}	_		IN	No criteria; ND in background
Methylene chloride (Dichloromethane)							OUT	Not detected in sediment.
Styrene							OUT	Not detected in sediment.
Tetrachloroethene							OUT	Not detected in sediment.
Toluene							OUT	Not detected in sediment.
trans-1,3-Dichloropropene							OUT	Not detected in sediment.
Trichloroethene	1						OUT	Not detected in sediment.
Vinyl chloride							OUT	Not detected in sediment.
Xylenes, Total							OUT	Not detected in sediment.
Dioxin TEQ (mammal) pg/g	333				10	12	IN	Greater than reference area.
							<u> </u>	

Notes: Except where noted, concentrations in ug/kg for organic constituens; mg/kg for inorganic constituents.

OUT = excluded from further consideration in sediment

IN = selected as COPC

¹ Threshold Effects Concentration - MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Arch. Environ. Contam. Toxicol.* 39:20-31.

² Sediment Quality Assessment Guidelines - MacDonald Environmental Sciences, Ltd. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters, Volume 1— Development and Evaluation of Sediment Quality Assessment Guidelines. Prepared for ³ Lowest Effects Level - Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

A blank in this column indicates that compound was not detected in sediment in this location

^{*} Ontario and Sediment Quality Guideline values are for 2,4'-DDT and 4,4'-DDT

^{**} Florida, Ontario, and Sediment Quality Guideline values are for Chlordane

ો. કં-3 Selection of COPCs for Ecological Risk Assessment Sauget Area I

Compounds	Maximum Detected Sediment	Sediment Screened In	Maximum Detected in Surface Water	Surface Water Screened In	Maximum Detected LMB Site	Max Detected LMB Reference Area	Maximum Detected BB Site	Max detected BB Reference Area	Maximum Detected Clam Site	Max detected Clam Reference Area	Maximum Detected Forage Fish Site	Max detected Forage Fish Reference Area	Maximum Detected Plants Site	Max Detected Plants Reference Area	Maximum Detected Shrimp Site	Max Detected Shrimp Reference Area	Selected as
2,4,5-T																	NO
2,4,5-TP (Silvex) 2.4-D		IN														1.3	NO
	23	IN									40	40					YES
2,4-DB											10	10					NO
Dalapon					1.0												NO
Dicamba					1.0				20		2.6	5.1	_	1.8			YES
Dichloroprop							6.6		32	87	6.7		7				YES
Dinoseb					4000					4.00							NO
MCPA					1800			8600		1400	3300	2400					YES
MCPP									4000					1300		4400	YES
Pentachlorophenol								<u> </u>			2.2	2.2		2	1.8	3.9	NO
Aluminum	17000		3.4	iN	33	81	18	66	13	26	52	100	44	160	26	100	YES
Antimony	4.7	IN											0.13		0.16		YES
Arsenic	19	IN	0.015						0.96	0.65			0.58	1,1		1.2	YES
Barium	420	IN	0.32	IN													YES
Beryllium	0.89																NO
Cadmium	47	IN							0.12	0.61							YES
Calcium	17000		89														NO
Chromium	38	IN	0 0041		0.93	0.36	0.7	0.48	1.1	2.2	0.32	1.7	0.097	0.53	0.23	0.28	YES
Cobalt	13		0.0015														NO
Copper	410	IN	0.012		0.68	0.84	0.89	1.1	0.99	2.4	1.7	0.75	2.1	13	8.3	16	YES
Cyanide, Total	410		0.012		0.00	0.0-1	0.00	•••	0.00		***	0.70	,		0.0		NO
	38000	IN	8.7	IN													YES
Iron		IN	0.02	IN	0.064		0.25	0.23	0.25	0.59	0.59	0.37	2.1	0.64	0.39	0.61	YES
Lead	320	IN		118	0.004		0.25	0.23	0.23	0.50	V.38	0.37	2.1	0.04	0.36	0.01	NO.
Magnesium	6800		33	IN													YES
Manganese	1400	IN.	1.7	IN		0.14	0.26	0.1			0.6	0.064					YES
Mercury	1.1	IN				0.14	0.26	0.1			U. U	0.004					
Molybdenum	3.7	IN	0.004														YES
Nickel	390	IN	0.021										2.6				YES
Potassium	2900		76														NO
Selenium					0.63	0.86		0.5		0.48	0.54	0.65				0.61	NO
Silver	0.79	IN							0.02						0.09	0.062	YES
Sodium			24														NO
Thallium																	NO
Vanadium	51		0.014														NO
Zinc	3700	IN	0 075		19	15	22	24	22	52	33	33	26	8.3	16	17	YES
Decachlorobiphenyl											_					_	
Dichlorobiphenyl																	
Heptachlorobiphenyl					21												
Hexachlorobiphenyl	22	IN			150	9.3	52				22						
Monochlorobiphenyl																	
Nonachlorobiphenyl																	
Octachlorobiphenyl																	
	66	IN			130	9.5	52				8.7					22	
Pentachiorobiphenyi	00	114			46	0.0	-										
Tetrachiorobiphenyi					70												
Trichlorobiphenyl																	YES
Total PCBs	83	IN															110

Table 5-3 Selection of COPCs for Ecological Risk Assessment Sauget Area 1

-	Maximum Detected	Sediment Screened	Maximum Detected in Surface	Surface Water	Maximum Detected LMB	Max Detected LMB Reference	Maximum Detected BB	Max detected BB Reference	Maximum Detected Clam	Max detected Clam Reference	Maximum Detected Forage Fish	Max detected Forage FISh Reference	Maximum Detected Plants	Max Detected Plants Reference	Maximum Detected Shrimp	Max Detected Shrimp Reference	Selected as
Compounds	Sediment	In	Water	Screened In	Site	Area	Site	Area	Site	Area	Site	Area	Site	Area	Site	Area	COPC
4,4'-DDD	3.8	IN						2									YES
4,4'-DDE	11	IN			21	6.6	29	12			10	3.5					YES
4,4'-DDT	4.5	IN															YES
Total DDT	43	IN															YES
Aldrin	4.1	IN												1			YES
Alpha Chlordane	5.3	IN					12	2.5					0.81				YES
alpha-BHC			0.001														NO
beta-BHC			0.02														NO
delta-BHC	0.34	IN	0.0022														YES
Dieldrin	9.3	IN	0.001			5.6		3.8				4.7					YES
Endosulfan I	5.7	IN	0.0024														YES
Endosulfan II	8.1	IN															YES
Endosulfan sulfate	9.5	IN	0 0032														YES
Endrin	1.7		0.00095					2.6									NO
Endrin aldehyde	14	IN	0.0032														YES
Endrin ketone	10	IN	0.0027														YES
Gamma Chlordane	17	IN			19		11	6.2				1.2	3.1				YES
gamma-BHC (Lindane)	4.8	IN	0.0038					1.2									YES
Heptachlor	0.93	IN	0.0029		1.5		2.8		2.3				1.9	3.8			YES
Heptachior epoxide	5.4	IN	0.00096														YES
Methoxychior	24	IN							5.4								YES
Toxaphene																	NO
1,2,4-Trichlorobenzene																	NO
1,2-Dichlorobenzene																	NO
1,3-Dichlorobenzene																	NO
1,4-Dichlorobenzene																	NO
2,2'-Oxybis(1-Chloropropane)																	NO
2,4,5-Trichlorophenol																	NO
2,4,6-Trichlorophenol																	NO
2,4-Dichlorophenol																	NO
2,4-Dinitrophenol																	NO
2,4-Dinitrotoluene																	NO
2,6-Dinitrotoluene																	NO
2-Chloronaphthalene																	NO
2-Chlorophenol																	NO
2-Methylnaphthalene																	NO
2-Methylphenol (o-cresol)																	NO
2-Nitroaniline																	NO
2-Nitrophenol																	NO NO
3,3'-Dichlorobenzidine																	NO NO
3-Methylphenol/4-Methylphenol																	NO NO
3-Nitroaniline																	NO
4,6-Dinitro-2-methylphenol																	NO
4-Bromophenylphenyl ether																	NO
4-Chloro-3-methylphenol 4-Chloroaniline																	NO
																	NO
4-Chlorophenylphenyl ether 4-Nitroaniline																	NO
4-Nitrophenol																	NO
Acenaphthene																	NO
Acenaphthylene													32				YES
Anthracene																	NO
Benzo(a)anthracene																	NO
Benzo(a)pyrene													140	37			YES
Senzo(b)fluoranthene													50	18			YES
Benzo(g,h,i)perylene													360	390			NO
													52	21			YES
Benzo(k)fluoranthene													71	2.			NO
bis(2-Chloroethoxy)methane																	NO
bis(2-Chloroethyl)ether							97	47	170	73	230	280				98	YES
bis(2-Ethylhexyl)phthalate							•1	41	.,,	13	230	400				-	NO
D. d. dhann, dabthairte																	
Butylbenzylphthalate Carbazole																	NO

Page ? of 3

Taure 5-3 Selection of COPCs for Ecological Risk Assessment Sauget Area I

Compounds	Maximum Detected Sediment	Sediment Screened In	Maximum Detected in Surface Water	Surface Water Screened in	Detected LMB Site	LMB Reference Area	Maximum Detected BB Site	Max detected BB Reference Area	Maximum Detected Clam Site	Max detected Clam Reference Area	Maximum Detected Forage Fish Site	Max detected Forage Fish Reference Area	Maximum Detected Plants Site	Max Detected Plants Reference Area	Maximum Detected Shrimp Site	Max Detected Shrimp Reference Area	Selected as
Di-n-butylphthalate					32	20											YES
Di-n-octylphthalate																	NO
Dibenzo(a,h)anthracene											48		76	400			YES
Dibenzofuran																	NO
Diethylphthalate							18	25	120	59	37	37			44	59	YES
Dimethylphthalate	130	IN	0.7														NO
Fluorene	130	IN	0.7														YE\$
Hexachlorobenzene																	NO
Hexachlorobutadiene																	NO
Hexachlorocyclopentadiene																	NO
Hexachloroethane																	NO NO
Indeno(1,2,3-cd)pyrene											54		300	440			YES
Isophorone											-		300	770			NO NO
N-Nitroso-di-n-propylamine																	NO
N-Nitrosodiphenylamine																	NO
Naphthalene																	NO
Nitrobenzene																	NO
Pentachlorophenol																	NO
Phenanthrene			0.7														NO
Phenol																	NO
Pyrene																	NO
Total PAHs			0.7									_					NO
1,1,1-Trichloroethane														-			NO
1,1,2,2-Tetrachloroethane																	NO
1,1,2-Trichloroethane																	NO
1,1-Dichloroethane																	NO
1,1-Dichloroethene																	NO
1,2-Dichloroethane																	NO
1,2-Dichloropropane																	NO
2-Butanone (MEK)																	NO NO
2-Hexanone																	NO NO
4-Methyl-2-pentanone (MIBK)			40														NO.
Acetone			18 1,7														NO.
Benzene			1.7														NO
Bromodichloromethane																	NO
Bromoform																	NO
Bromomethane (Methyl bromide) Carbon disulfide																	NO
Carbon tetrachloride																	NO
Chlorobenzene																	NO
Chloroethane																	NO
Chloroform																	NO
Chloromethane																	NO
cis-1,3-Dichloropropene																	NO
Cis/Trans-1,2-Dichloroethene																	NO
Dibromochloromethane																	NO
Ethylbenzene	11	IN															NO
Methylene chloride (Dichloromethane)																	NO
Styrene																	NO
Tetrachloroethene																	NO
Toluene																	NO
trans-1,3-Dichloropropene																	NO
Trichloroethene																	NO
Vinyl chloride																	NO
Xylenes, Total																	NO
Dioxins		IN		IN	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Yes	Yes	YES

LMB = Largemouth Bass

BB = Brown Bullhead
2,4-Dimethylphenol was also detected in Site plants at 51 ug/kg
Concentrations in ug/kg except metals which are in mg/kg

Table 7-1
Comparison of Largemouth Bass Concentrations to Toxicity Benchmarks
Sauget Area I

;**	<u></u>	T	<u> </u>	Reference	Reference
Compound	Benchmark	Site Maximum	Site Average	Maximum	Average
Herbicides (ug/kg)	1	ND	ND	ND	ND
2,4-D	NA	ND	ND	ND	ND
Dicamba	NA NA	1.9	5.6	ND	ND
Dichloroprop	NA	ND	ND	ND	ND
MCPA	NA	1800	1267	ND	ND
MCPP	NA	ND	ND	ND	ND
Metals (mg/kg)		1]		l l
Aluminum, Total	NA NA	33	20	81	41
Antimony	NA 0.50	ND	ND	ND	ND
Arsenic, Total	0.52	ND	ND	ND	ND
Barium, Total	NA 0.5	ND	ND ND	ND	ND
Cadmium, Total	0.5	ND	ND	ND	ND
Chromium, Total	NA 13.4	0.93	0.64	0.36	0.28
Copper, Total	12.1 NA	0.68	0.54	0.8	0.5
Iron	26.2	ND ND	ND ND	ND ND	ND ND
Lead, Total Manganese	20.2 NA	ND	ND I	ND ND	ND ND
Manganese Mercury	0.25	0.064	0.043	0.1	0.1
Molybdenum	NA	ND	ND	ND	ND
Nickel, Total	NA NA	ND	ND	ND	ND
Silver	NA NA	ND	ND I	ND	ND ND
Zinc, Total	NA NA	19	17	15	11
Total PCBs (ug/kg)	950	320	237	ND	ND
Pesticides (ug/kg)					
4,4'-DDD	600	ND	ND	ND	ND
4,4'-DDE	29200	21	14	6.6	5.3
4,4'-DDT	3800	ND	ND	ND	ND
Aldrin	157	ND	ND	ND	ND
Alpha Chlordane	16600 °	ND	ND	ND	ND
delta-BHC	NA	ND	ND	ND	ND
Dieldrin	3700	ND	ND	5.6	5.0
Endosulfan I	195 ^b	ND	ND	ND	ND
Endosulfan II	195 ^b	ND	ND	ND	ND
Endosulfan sulfate	195 b	ND	ND	ND	ND
Endrin aldehyde	150 ^c	ND	ND	ND	ND
Endrin ketone	150 °	ND	ND	ND	ND
Gamma Chlordane	16600 a	19	12	ND	ND
gamma-BHC (Lindane)	NA	ND	ND	ND	ND
Heptachlor	5700	1.5	2.8	ND	ND
Heptachlor epoxide	3200	ND	ND	ND	ND
Methoxychlor	128	ND	ND	ND	ND
SVOC (ug/kg)					
bis(2-ethylhexyl)phthalate	NA	ND	ND	ND	ND
Di-n-butylphthalate	NA	32	67	20	52
Diethylphthalate	NA	ND	ND	ND	ND
Acenaphthylene	NA	ND	ND	ND	ND
Fluoranthene	NA	ND	ND	ND	ND
Benzo(b)fluoranthene	NA	ND	ND	ND	ND
Benzo(k)fluoranthene	NA	ND	ND	ND	ND
Benzo(a)pyrene	28.3	ND	ND	ND	ND
Benzo(a)pyrene	23.9	ND	ND	ND	ND
Indeno(1,2,3-c-d)pyrene	NA	ND	ND	ND	ND
Dibenz(a,h)anthracene	NA NA	ND	ND	ND	ND
2,3,7,8-TCDD, TEQ, ug/kg * Maximum and Average TEOs	0.05	0.003	0.0021 *	0.00019*	0.00011*

^{*} Maximum and Average TEQs for fish were used for comparison to benchmark.

a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endrin were used

Table 7-2 Comparison of Brown Bullhead Concentrations to Toxicity Benchmarks Sauget Area I

	· · · ·	Site	Site	Reference	Reference
Compound	Benchmark	Maximum	Average	Maximum	Average
Herbicides (ug/kg)					
2,4-D	NA	ND	ND	ND	ND
Dicamba	NA	ND	ND	ND	ND
Dichloroprop	NA	6.6	35.5	ND	ND :
MCPA	NA	ND	ND	8600	3533
MCPP	NA	ND	ND	ND	ND
Metals (mg/kg)					
Aluminum, Total	NA	18	13	66	34
Antimony	NA	ND	ND	ND	ND
Arsenic, Total	0.52	ND	ND	ND	ND
Barium, Total	NA .	ND	ND	ND	ND
Cadmium, Total	0.5	ND	ND	ND	ND
Chromium, Total	NA	0.7	0.4	0.5	0.4
Copper, Total	12.1	0.89	0.84	1	1
iron	NA	ND	ND	ND	ND
Lead, Total	26.2	0.25	0.24	0.23	0.21
Manganese	NA	ND	ND	ND	ND
Mercury	0.25	0.3	0.1	0.1	0.08
Molybdenum	NA	ND	ND	ND	ND
Nickel, Total	NA	ND	ND	ND	ND
Silver_	NA	ND 1	ND	ND	ND
Zinc, Total	NA	22	20	24	20
Total PCBs (ug/kg)	950	102	63	ND	ND
Pesticides (ug/kg) 4.4'-DDD	600	ND	ND	1.8	5.3
4.4'-DDE	29200	29	18	1.0	8.8
4,4'-DDT	3800	ND	ND	ND	ND
Aldrin	157	ND	ND ND	ND	ND ND
Alpha Chlordane	16600 a	12	7	2.5	1.6
delta-BHC	NA	ND	ND	ND	ND
Dieldrin	3700	ND	ND	3.8	2.8
Endosulfan I	195 b	ND	ND	ND	ND
	_	_	· -	_	
Endosulfan II	195	ND	ND	ND	ND
Endosulfan sulfate	100	ND	ND	ND	ND
Endrin aldehyde	150 ^c	ND	ND	ND	ND
Endrin ketone	150 ^c	ND	ND	ND	ND
Gamma Chlordane	16600 °	11	7	6.2	6.4
gamma-BHC (Lindane)	NA	ND	ND	1.2	3.0
Heptachlor	5700	2.8	3.2	ND	ND
Heptachlor epoxide	3200	ND	ND	ND	ND
Methoxychlor	128	ND	ND	ND	ND
SVOC (ug/kg)	l 🗍	.=			l
bis(2-ethylhexyl)phthalate	NA	97	89	47	59
Di-n-butylphthalate	NA	ND	ND	ND	ND
Diethylphthalate	NA I	18	63 ND	25	65
Acenaphthylene	NA NA	ND	ND	ND	ND
Fluoranthene	NA NA	ND ND	ND	ND	ND
Benzo(b)fluoranthene	NA NA	ND	ND	ND	ND
Benzo(k)fluoranthene	NA 20.2	ND	ND ND	ND	ND
Benzo(a)pyrene	28.3	ND	ND	ND	ND
Benzo(a)pyrene	23.9	ND ND	ND	ND	ND
Indeno(1,2,3-c-d)pyrene	NA NA	ND ND	ND ND	ND ND	ND ND
Dibenz(a,h)anthracene 2,3,7,8-TCDD, TEQ, ug/kg	0.05	0.003 *	0.002 *	0.00069*	0.00045*
E,U,I,OTODD, TEQ, UUNG	0.03	0.003	0.002	0.00003	1 0.00040

^{*}Maximum and Average TEQs for fish were used for comparison to benchmarks a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endrin were used

Table 7-3 Comparison of Forage Fish Concentrations to Toxicity Benchmarks Sauget Area I

Compound	Benchmark	Site Maximum	Site Average	Reference Maximum	Reference Average
Herbicides (ug/kg)	1	1			
2,4-D	NA	ND	ND	ND	ND
Dicamba	NA	2.6	11	ND	ND
Dichloroprop	NA	6.7	52.2	5.1	39
MCPA	NA	3300	2800	2400	1350
MCPP	NA	ND	ND	ND	ND_
Metals (mg/kg)					
Aluminum, Total	NA	52	40	100	50
Antimony	NA	ND	ND	ND	ND
Arsenic, Total	0.52	ND	ND	ND	ND
Barium, Total	NA NA	ND	ND	ND	ND
Cadmium, Total	0.5	ND	ND	ND	ND
Chromium, Total	NA	0.3	0.3	1.7	0.71
Copper, Total	12.1	2	1	0.75	0.54
Iron	NA	ND	ND	ND	ND
Lead, Total	26.2	0.59	0.36	0.4	0.3
Manganese	NA	ND	ND	ND	ND
Mercury	0.25	0.6	0.2	0.064	0.053
Molybdenum	NA	ND	ND	ND	ND
Nickel, Total	NA	ND	ND	ND	ND
Silver	NA	ND	ND	ND	ND
Zinc, Total	NA	33	30	33	26
Total PCBs (ug/kg)	950	39	30	ND	ND
Pesticides (ug/kg)					
4,4'-DDD	600	ND	ND	ND	ND
4,4'-DDE	29200	10	7.7	3.5	4.9
4,4'-DDT	3800	ND	ND	ND	ND
Aldrin	157	ND	ND	ND	ND
Alpha Chlordane	16600 a	ND	ND	ND	ND
delta-BHC	NA	ND	ND	ND	ND
Dieldrin	3700	ND	ND	4.7	5.4
Endosulfan I	195 b	ND	ND	ND	ND
Endosulfan II	195 b	ND	ND	ND	ND
Endosulfan il Endosulfan sulfate	NA	ND	ND ND	ND ND	ND ND
	I				
Endrin aldehyde	1 130	ND	ND	ND	ND
Endrin ketone	150	ND	ND	ND	ND
Gamma Chlordane	16600 a	ND	ND	1.2	3.2
gamma-BHC (Lindane)	NA	ND	ND	ND	ND
Heptachlor	5700	ND	ND	ND	ND
Heptachlor epoxide	3200	ND	ND	ND	ND
Methoxychlor	128	ND	ND	ND	ND
SVOC (ug/kg)					
bis(2-ethylhexyl)phthalate	NA	230	183	280	172
Di-n-butylphthalate	NA	ND	ND	ND	ND
Diethylphthalate	NA	37	31	37	61.3
Acenaphthylene	NA	ND	ND	ND	ND
Fluoranthene	NA	ND	ND	ND	ND
Benzo(b)fluoranthene	NA	ND	ND	ND	ND
Benzo(k)fluoranthene	NA	ND	ND	ND	ND
Benzo(a)pyrene	28.3	ND	ND	ND	ND
Benzo(a)pyrene	23.9	ND	ND	ND	ND
ndeno(1,2,3-c-d)pyrene	NA	54	103	ND	ND
Dibenz(a,h)anthracene	NA	48	101	ND	ND
2,3,7,8-TCDD, TEQ, ug/kg	0.05	0.001 *	0.00085	0.0014	0.00096

^{*} Maximum and Average TEQs for fish was used for comparison to benchmark a Benchmark value is for Chlordane

b Benchmark value for Endosulfan was used

c Benchmark values for Endrin were used

Tàble 7-4 Whole Body Toxicity Values for Fish Sauget Area 1

Compound	Species Common Name	Chemical Common Name	Concentration -Wet (mg/kg)	Reps	Effect	Endpoint	Exposure Route	Body Part	Start Life Stage
Arsenic	Bluegill	Arsenic	0.52	5	Mortality	NOED	Absorption	Whole Body	Immatur
		··· -		<u> </u>					
Cadmium	Guppy	Cadmium	0.5	2	Growth	LOED	Ingestion	Whole Body	Immatur
									I
_	1 <u> </u>	_		1	Morphology;				
Copper	Common carp	Copper	12.1	1	Mortality	LOED	Combined	Whole Body	Egg
	Common carp	Copper	12.1	1	Reproduction	NOED	Combined	Whole Body	Egg
1	Fatherdesigness	1					L		↓
Lead	Fathead minnow	Lead	26.2	1	Behavior	LOED	Absorption	Whole Body	Immatu
	Fath and astronomy				Behavior,				1
	Fathead minnow	Lead	26.2	1 1	Physiological	NOED	Absorption	Whole Body	Immatu
		-			Cellular,				<u> </u>
	1				Developmental,				i
Mercury	Walleye	Mercury	0.25	22	Physiological	LOED	Ingestion	Whole Body	Immatu
	Walleye	Mercury	0.25	22	Mortality	NOED	Ingestion	Whole Body	Immatu
							900	***************************************	111111111111111111111111111111111111111
PCBs									†
					Growth,				†
	Catfish-Channel	PCBs	14.3	3	Morphology	LOED	Ingestion	Whole Body	Immatu
	Pinfish	PCBs	2.2	2	Mortality	LOED	Absorption	Whole Body	Immatu
	Pinfish	PCBs	0.98	10	Mortality	NOED	Absorption	Whole Body	Immatu
	Pinfish	PCBs	3.8	10	Mortality	NOED	Absorption	Whole Body	Immatu
	Catfish-Channel	PCBs	10.9	3	Mortality	NOED	Ingestion	Whole Body	Immatu
	Catfish-Channel	PCBs	14.3	3	Mortality	NOED	Ingestion	Whole Body	Immatu
					Reproduction;				I -
	Redbreast sunfish	PCBs	0.95	field study	Growth	NOED	Field study	Whole Body	Adult
					Reproduction;				
	Redbreast sunfish	PCBs	0.95	field study	Growth	NOED	Field study	Whole Body	Adult
					Reproduction;				
	Redbreast sunfish	PCBs	0.95	field study	Growth	NOED	Field study	Whole Body	Adult
				L	<u> </u>	1.055	0		A 411
DDD	Fathead minnow	4,4`-DDD	0.6	1	Reproduction	LOED	Combined	Whole Body	Adult
	1. 6-1	14: 005	29.2	1	Mortality	NOED	Combined	Whole Body	NA NA
DDE	Mosquito fish	4,4`-DDE	29.2	 	Mortality	NOED	Combined	vviiole body	11/4
DDT	Fathead minnow	4,4`-DDT	3.8	1	Reproduction	LOED	Combined	Whole Body	Adult
וטט	Tauleau Illillillow	4,4 -001	-	'	Troproduction	LOLD	Combined	Whole Bedy	710011
Aldrin	Mosquito fish	Aldrin	0.157	1	Mortality	NOED	Combined	Whole Body	NA NA
7.007.77				1					
Dieldrin	Bluegill	Dieldrin	3.7	5	Behavior	LOED	Absorption	Whole Body	Immatu
Endosulfan	Pinfish	Endosulfan	0.195	1_1_	Mortality	NOED_	Combined	Whole Body	Matur
				ļ <u>_</u>	<u></u>		<u> </u>		
Endrin	Golden Shiner	Endrin	0.15	3	Behavior	LOED	Absorption	Whole Body	NA.
	Mosquito fish	Endrin	3.4	1	Mortality	LOED	Combined	Whole Body	NA
	Catfish-Channel	Endrin	0.41	1	Mortality	NOED	Absorption	Whole Body	Immatu

Table 7-4 Whole Body Toxicity Values for Fish Sauget Area 1

Compound	Species Common Name	Chemical Common Name	Concentration -Wet (mg/kg)	Reps	Effect	Endpoint	Exposure Route	Body Part	Start Life Stage
Chlordane	Pinfish	Chlordane	16.6	2	Mortality	LOED	Combined	Whole Body	Adult
Heptachlor	Pinfish	Heptachlor	5.7	1	Mortality	NOED	Combined	Whole Body	Mature
Heptachlor epoxide	Pinfish	Heptachlor epoxide	3.2	1	Mortality	NOED	Combined	Whole Body	Mature
Methoxychlor	Mosquito fish	Methoxychlor	0.128	1	Mortality	NOED	Combined	Whole Body	NA
Benzo(a)pyrene	Gizzard Shad	Benzo[a]pyrene	0.0283	2	Physiological	LOED	Absorption	Whole Body	Adult
	Gizzard Shad	Benzo[a]pyrene	0.0239	2	Physiological	NOED	Absorption	Whole Body	Adult
Dioxin	Common carp	2,3,7,8-TCDD	0.0022	1	Behavior, Cellular, Morphology, mortality	LOED	Absorption	Whole Body	Adult
	Yellow perch	2,3,7,8-TCDD	0.000143	6	Growth, Morphology, Mortality	NOED	Ingestion	Whole Body	Immature
	Lake trout	2,3,7,8-TCDD	0.00005	NA NA	Mortality	NOED	Absorption	Whole Body	Based on eg

If multiple values are available; selected value is bold and in italics.

Table 7-4 Whole Body Toxicity Values for Fish Sauget Area 1

Cadmium	1980 1982 1996 1996 1991 1991	Author Barrows, M.E., S.R. Petrocelli, K.J. Macek and J.J. Carroll Hatakeyama, S. and M. Yasuno Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Journal p. 379-392 in Haque, R., ed. Dynamics, Exposure and Hazard Assessment of Toxic Chemical Bull. Environ. Contam. Toxicol. 29:159-166. Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
Cadmium 19 Copper 19 Lead 19 Mercury 19	1982 1996 1996 1991 1991	Hatakeyama, S. and M. Yasuno Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Bull. Environ. Contam. Toxicol. 29:159-166. Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
Copper 1:	1996 1996 1991 1991	Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
Copper 1:	1996 1996 1991 1991	Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
11 Lead 11	1996 1991 1991	Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
11 Lead 11	1996 1991 1991	Stouthart, J.H.X., Haans, J.L.M., Lock, R.A.C., Bonga, S.E.W. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Environmental Toxicology and Chemistry, Vol. 15, No. 3, pp. 376-383 (1996) Aquatic Toxicol. 21: 71-80 Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
Mercury 19	1991	Weber, D.N., Russo, A., Seale, D.B., Spieler, R.E. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Aquatic Toxicol. 21: 71-80 Aquat. Toxicol. 35:265-278.
Mercury 19	1996	Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen and J.C. Leiter	Aquat. Toxicol. 35:265-278.
19			
19			
	1990	rnegmann, A.S., M.C. Walzin, T. Dillick-Johnsen and J.C. Leilei	Aquat. Toxicol. 35:265-278.
PCBs			Aquat. 10xicol. 55.265-276.
1.	1976	Hansen, L.G., W.B. Wiekhorst and J. Simon	J. Fish. Res. Bd. Can. 33:1343-1352.
		Hansen, D.J., P.R. Parrish and J. Forester	Environ. Res. 7:363-373.
		Duke, T.W., J.I. Lowe and A.J. Wilson, Jr.	Bull. Environ. Contam. Toxicol. 5:171-180.
1/	1970	Duke, T.W., J.I. Lowe and A.J. Wilson, Jr.	Bull. Environ. Contam. Toxicol. 5:171-180.
		Hansen, L.G., W.B. Wiekhorst and J. Simon	J. Fish. Res. Bd. Can. 33:1343-1352.
		Hansen, L.G., W.B. Wiekhorst and J. Simon	J. Fish. Res. Bd. Can. 33:1343-1352.
		Adams, S.M., K.L. Shepard, M.S. Greeley Jr., B.D. Jimenez, M.G. Ryon,	
1º		L.R. Ghugart, and J.F. McCarthy;	Marine Environmental Research. 28: 459-464.
			In J.F. McCarthy and L.R. Shugart, eds., Biomarkers of Environmental Contamination. Lewis
1	1990	Adams, S.M., L.R. Shugart, G.R. Southworth and D.E. Hinton	Publishers, Boca Raton, FL., pp. 333-353.
		Adams, S.M., W.D. Crumby, M.S. Greeley, Jr., M.G. Ryon, and E.M	
1		Schilling	Environmental Toxicology and Chemistry. 11: 1549-1557.
DDD 1	1977	Jarvinen, A.W., M.J. Hoffman, and T.W. Thorslund	J. Fish. Res. Board. Can. 34:2089-2103
DDE 1	1974	Metcalf, R.L.	p. 17-38 in Hayes, W.J., Essays in Toxicology, Volume 5. Academic Press
227	4077	to the AMA MAIN AND AND THE THE PARTY OF THE	J. Fish. Res. Board. Can. 34:2089-2103
DDT 1	1977	Jarvinen, A.W., M.J. Hoffman, and T.W. Thorslund	J. Fish. Res. Board. Can. 34.2009-2103
Aldrin 1	1974	Metcalf, R.L.	p. 17-38 in Hayes, W.J., Essays in Toxicology, Volume 5. Academic Press
Dieldrin 1	1967	Gakstatter, J.H. and C.M. Weiss	Trans. Amer. Fish. Soc. 96:301-307.
Endosulfan 19	1977	Schimmel, S.C., Patrick, J.M., Wilson, A.J.	Aquatic Toxicology and Hazard Evaluation, ASTM STP 634, American Society for Testing and Materials, pp. 241-252 (1977)
E de la constant de l	4000	Ludha II D.S. Cassusan and W.D. Burke	Trans Amer Fish Cos 07:260 262
		Ludke, J.L., D.E. Ferguson and W.D. Burke	Trans. Amer. Fish. Soc. 97:260-263. Environ. Health Perspect. 8:35-44.
		Metcalf, R.L., I.P. Kapoor, P.Y. Lu, C.K. Schuth and P. Sherman Argyle, R.L., Williams, G.C., and H.K. Dupree	J. Fish. Res. Board Can. 30: 1743-1744

Table 7-4 Whole Body Toxicity Values for Fish Sauget Area 1

Compound	Year	Author	Journal
	4070	District District District and I forest	1
Chlordane	1976_	Parrish, P.R., S.C. Schimmel, D.J. Hansen, J.M. Patrick, and J. Forester	Journal of Toxicology and Environmental Health, 1:485-494, 1976
Heptachlor	1976	Schimmel, S.C., Patrick, J.M., Forester, J.	Journal of Toxicology and Environmental Health, 1:955-965, 1976
Heptachlor epoxide	1976	Schimmel, S.C., Patrick, J.M., Forester, J.	Journal of Toxicology and Environmental Health, 1:955-965, 1976
Methoxychlor	1974	Metcalf, R.L.	p. 17-38 in Hayes, W.J., Essays in Toxicology, Volume 5. Academic Press
Benzo(a)pyrene	1994	Levine, S.L., J.T. Oris and T.E. Wissing	Aquat. Toxicol. 30:61-75.
	1994	Levine, S.L., J.T. Oris and T.E. Wissing	Aquat. Toxicol. 30:61-75.
Dioxin	1991	Cook, P.M., D.W. Kuehl, M.K. Walker and R.E. Peterson	p. 143-167 in Gallow, M.A., et.al. Biol. Basis for Risk Assmt. of Dioxins and Related Compounds.
	1986	Kleeman, J.M., J.R. Olson, S.M. Chen and R.E. Peterson	Toxicol. Appl. Pharmacol. 83:402-411.
	1993_	USEPA	EPA/600/R-93/055

If multiple values are available; selected value is bold and in italics.

							Backround	Wat	er Qualit	y Benchmark	
Sample ID:	SW-CSF-S1 Concentration	ER Q	SW-CSF-S2 Concentration	ER Q	SW-CSF-S3 Concentration	ER Q	(Twice average of reference area)				
Compounds		 		 -	 		 	Acute		Chronic	
Herbicides (ug/l) Metals (mg/l)	ND		ND		ND		ND				
Aluminum Arsenic Barium	0.039 0.01 0.13	n 1	0.15 0.0032 0.13	n n	0.55 0.0049 0.12	J	26 0.02 0.72	0.75 0.36 0.11	2,c 1 3	0.087 0.19 0.004	2,c 1 3
Copper Iron	0.0016 0.5	J	0.002 0.55	٦	0.012 1	J	0.02 32	0.044	1,8	0.027 1	1,a 2
Lead Manganese Molybdenum	0.005 0.082 0.01	Λ 1 0	0.0022 0.1 0.01	η 1 1	0.0037 0.14 0.0028) 1	0.06 3.9 0.02	0.33 2.3 16	1,a 3 3	0.069 0.12 0.37	1,a 3 3
Nickel Zinc	0.0069 0.0073	n n	0.013 0.035	J	0.021 0.075	J	0.04 0.16	1.1 0.27	2,b 2,b	0.12 0.27	2,b 2,b 2
PCB (ug/l)	ND		ND		ND		ND			0.014	đ
Pesticides (ug/l)	ND		ND		ND						
SVOC (ug/l) Fluoranthene	0.7	J	10	U	10	U	ND			15	4
Dioxins (ug/l) 2,3,7,8-TCDD TEQ Mammal ⁶	9.01197E-06		1.5012E-06		1.5583E-06		2.70E-05	ッ		7	

¹ Illinois Water Quality Standards

boided values indicate exceedance of chronic Water Quality Benchmarks shaded values indicate exceedance of acute Water Quality Benchmarks

Hardness dependent criteria calculated at a hardness of 220 mg/l as CaCO₃ (the lowest detected on site)

² US Environmental Protection Agency. 1999. National Recommended Water Quality Criteria—Correction. Office of Water, Washington, DC. April 1999. EPA 822-Z-99-001.

³ Suter, GW, CL Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2.

⁴ Suter, GW, CL Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Blota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2.

⁵ Fish TEQ values were calculated for 2,3,7,8-TCDD

⁶ Other COPCs were not detected in Dead Creek Sector F surface water

[&]quot;a" Calculated values for Illinois criteria are based on average hardness

[&]quot;b" NAWQ Criteria for metals are calculated based on hardness

[&]quot;c" At pH 6.5 - 9.0, see G, I, and L under National recommended water quality criteria for non priority pollutants

[&]quot;d" For PCBs

Table 7-6
Comparison of Borrow Pit Surface Water Concentrations to Criteria
Sauget Area I

							Backropund	Wate	er Qual	ity Standards	
Sample ID:	SW-BPL-S1		SW-BPL-S2		SW-BPL-S3	1	(Twice average				
	Concentration	ER Q	Concentration	ER Q	Concentration	ER Q	of reference area)				
Compounds		<u> </u>		<u> </u>			<u></u>	Acute		Chronic	
Herbicides (ug/l)	ND		ND		ND		ND				
Metals (mg/l)		}	l	1	1	1				1	
Atuminum	J3.4		0.71		0.65		26	0.75	2,d	0.087	2,d
Arsenic	0.015		0.0079	la la	0.012		0.02	0.36	1	0.19	1
Barium	0.32		0.12	`	0.045	1	0.72	0.11	3	0.004	3
Chromium	0.0041	J	0.01	U	0.01	U	0.04	4.036/.016	1,8	0.481/.011	1,2
Copper	0.0074	Ĺ	0.0036	J	0.0048	J	0.02	0.0468	1,a	0.0285	1,a
Iron	8.7	J	1.6	J	1.3	J	32	ļ		1	2
Lead	0.02	1	0.002	J	0.0029	J	0.06	0.355	1,a	0.0744	1,8
Manganese	1.7	1	0.13	1	0.17	1	3.9	2.3	3	0.12	3
Molybdenum	0.0035	J	0.01	U	0.004	J	0.02	16	3	0.37	3
Nicket	0.015	J	0.012	J	0.0077	J	0.04	1.1	2,b	0.12	2. b
Zinc	0.048		0.027		0.017	J	0.16	0.287	2.b	0.287	2,b
PCB (ug/l)	ND		ND	1	ND	İ	ND			0.014	2,f
Pesticides (ug/l)											
delta-BHC	0.00013	J	0.0022	J	0.012	U	0.0125	39	3,g	2.2	3,g
Dieldrin	0.1	U	0.1	Įυ	0.001	J	0.053	0.24	2	0.056	2
Endosulfan I	0.0024	J	0.05	խ	0.0015	J	0.02	0.22	2,•	0.056	2,0
Endosulfan sulfate	0.1	U	0.1	Įυ	0.0032	J	0.032	0.22	2,∎	0.056	2,€
Endrin	0.1	υ	0.1	խ	0.00095	J	0.053	0.086	2,c	0.036	2,c
Endrin aldehyde	0.0032	J	0.1	U	0.0016	J	0.010	0.086	2,c	0.036	2,c
Endrin ketone	0.1	U	0.1	Įυ	0.0027	J	0.060	0.086	2,c	0.036	2,c
gamma-BHC (Lindane)	0.019	U	0.0038	J	0.0024	h	0.013	0.95	2	0.036	2,c
Heptachlor	0.0026	J	0.0022	1	0.0029	J	0.039	0.52	2	0.0038	2
Heptachlor epoxide	0.00096	J	0.0009	h	0.05	U	0.012	0.52	2	0.0038	2
SVOC (ug/l)	ND		ND		ND			{		1	
Dioxins (ug/l?)			i	1	1						
2,3,7,8-TCDD TEQ Mammal h	8.5902E-07	1	7.453E-07	1	4.8413E-07	1	2.70E-05	1		1	

¹ Illinois Water Quality Standards

boilded values indicate exceedance of chronic Water Quality Benchmarks shaded values indicate exceedance of acute Water Quality Benchmarks

Hardness dependent criteria calculated at a hardness of 220 mg/l as CaCO3 (the lowest detected on site)

² US Environmental Protection Agency. 1999. National Recommended Water Quality Criteria—Correction. Office of Water, Washington, DC. April 1999. EPA 822-Z-99-001.

³ Suter, GW, CL Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Blota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-96/R2.

[&]quot;a" Calculated values for Illinois criteria are based on average hardness

[&]quot;b" NAWQ Criteria for metals are calculated based on hardness

[&]quot;c" there is some uncertainty since the detection limit is greater than the AWQC

[&]quot;d"At pH 6.5 - 9.0, see G, I, and L under National recommended water quality criteria for non priority pollutants

[&]quot;e" For alpha- and beta-Endosulfan

[&]quot;f" For PCBs

[&]quot;g" For BHC (other)

[&]quot;h" Mammal TEQ values were calculated for 2,3,7,8-TCDD

Table 7-7
Comparison of Sediment Concentrations in Dead
Creek Section F to Sediment Quality Guidelines
Sauget Area I

Sample ID:	SED-CSF-S1- 0.2FT	ED 0	SED-CSF-S2- 0.2FT		SED-CSF-S3- 0.2FT	50.0		Sediment Quality	Sediment Quality
la	Concentration	ER Q	Concentration	ER Q	Concentration	ER Q	Background	Guidelines ¹	Guidelines ¹ Consensus-
Compounds						$oxed{oxed}$		Consensus-based TEC	based PEC
Herbicides (ug/kg)	4.4	l l							
2,4-D	110	UJ	240	ບນ	23	J	20	NA	NA NA
Metals (mg/kg)	7000	1.1	44000						
Aluminum Arsenic	7800	l i	14000	l i	17000	J	29000	NA NA	NA NA
Barium	8 150	J	19 250	J	15	י	14	9.79	33
Beryllium	0.53	-	∠50 0.85	J	270	ļļ	410	NA.	NA NA
Cadmium	7.4	1		J	0.89	ļ	1.6	NA .	NA NA
Chromium		1 - 4		J	. 14	1	0.83	0.99	4.98
	19 160	J	38	J	30	!	40	43.4	111
Copper		1	410	J	240	J	38	31.6	149
Iron	14000	l i	22000	J	26000	l i	42000	20000 ²	40000 ²
Lead	110	J	320	J	110	J	44	35.8	128
Manganese	170	J	230	J	510	J	1400	460 ²	1100 ²
Mercury	0.3	,	1.1	J	0.45	1 1	0.096	0.18	1.06
Molybdenum	0.7	ارا	3.7	J	0.76	j	0.89	NA NA	
Nickel	90	J.7	390	, i	180 1800	J	43	22.7	48.6
Zinc	950	J	3700	J)	1000	J	170	121	459
PCBs and Pesticides (ug/kg)	l	1 . I						ļ	
Total PCBs	83	J	83	J	120	เกา	15	59.8	676
4,4'-DDT	4.5	J	35	บม	24	ຸບ」	ND	4.16 ³	62.9 ³
Total DDT	19	"	43	J	27	J	ND	5.28	572
Aldrin	4.1	1	18	υJ	12	υJ	ND	2 ²	320, 1120, 488 ^{2,5}
Alpha Chlordane	4.6	J	5.3	J	0.84	J	ND	3.24 4	17.6 4
delta-BHC	0.34	J	5.3	UJ	3.7	UJ	ND	NA NA	NA NA
Dieldrin	9.3	J	35	บม	0.99	J	ND	1.9	61.8
Endosulfan I	5.7	J	2	J	1.2	j	ND	NA NA	NA NA
Endosulfan II	8.1	J	5.5	J	1.8	J	ND	NA NA	NA NA
Endosulfan sulfate	2.8	[J [35	UJ	24	[UJ [ND	NA NA	NA NA
Endrin	1.7	J	35	UJ	1.7	J	ND	2.22	207
Endrin aldehyde	14	J	9	J	3.6	J	ND	NA NA	NA NA
Endrin ketone	10	J	7.2	J	3.8	J	ND	NA NA	NA NA
Gamma Chlordane	17	J	7.5	J	2.4	J	ND	3.24 4	17.6 ⁴
Heptachlor	7.8	UJ	18	ŲJ	0.93	J	ND	0.3 NEL ²	NA NA
Heptachlor epoxide	5.4	J	18	UJ	0.51	ן נ	ND	2.47	16
Methoxychlor	24	J	14	J	7.3	J	ND	NA.	NA.
SVOC (ug/kg)		1 1							
Fluoranthene	120	J	890	บม	130	J	ND	423	2230
Dioxins (ug/kg) 2,3,7,8-TCDD TEQ Mammai *	0.144391		0.3318165		0.170232		0.0125	NA NA	NA NA

Background = 2 x average concentration from reference areas.

NA indicates not available.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 5

Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August 1993.

³ Guidelines for sum DDT

⁴ Guidelines for Chlordane

Ontario SEL value is site specific based on TOC value

Mammal TEQ values were calculated for 2,3,7,8-TCDD

bolded numbers exceed TEC value, or Ontario LEL or NEL value

shaded numbers exceed PEC value

Table 7-8 Comparison of Borrow Pit Lake Sediment Concentrations to Sediment Quality Guidelines Sauget Area I

Sample ID:	BPL-ESED-S1-0.2FT Average Concentration	ER Q	BPL-ESED-S2-0.2FT Concentration	ER Q	BPL-ESED-S3-0.2FT Concentration	ER Q	Background	Sediment Quality Guidelines ¹ Consensus-based TEC	Sediment Quality Guidelines ¹ Consensus-based PEC
Herbicides (ug/kg)									
2,4-D	8.8	J	24	เกา	11	J	20	NA	NA NA
Metals (mg/kg)	4.4000	Ι.	10000			١. ١			:
Aluminum	14000	J	16000	J	11000	1	29000	NA	NA NA
Arsenic	17	J	17	J	13	4	14	9.79	33
Barium	390	ָי וַ	420	J	240	1 1	410	NA NA	NA NA
Beryllium	0.74	J	0.82	J	0.58	J	16	NA NA	NA NA
Cadmium	2	ì	2.7	J	1.6		0.83	0.99	4.98
Chromium	21	J	26	J	18	J	40	43.4	111
Copper	46	U	64	J	36	J	38	31.6	149
Iron	36000	U	38000	J	28000	J	42000	20000 ²	40000 ²
Lead	52	U	58	J	34	J	44	35.8	128
Manganese	1300	J	1400	J	940	J	1400	460 ²	1100 ²
Mercury	0.1	U	0.16	J	0 11	J	0.096	0.18	1.06
Molybdenum	0.5	U	0.92	J	0.37	J	0.89		
Nickel	53	U	54	J	35	J	43	22.7	48 6
Silver	2.8	υJ	0.79	J	2.5	UJ	2.05		
Zinc	310	J	370	J	250	J		121	459
Pesticides (ug/kg)	l .	1		ì	•	1 1		1	Ì
4,4'-DDE	1.1	J	3.2	J	1.6	J	ND	3.16 °	31.3
4.4'-DDT	1.1	J	19	UJ	1.4	J	ND	4.16 ³	62 9 ³
Total DDT	2.2	ر ا	22	J	3	أزا	ND	5.28	572
Alpha Chlordane	0.48	J	3.2	ازا	1.2		ND	3.24 4	17.64
Dieldrin	0.26	ز ا	0.5	انّا	18	این ا	ND	1.9	61.8
Endosulfan I	4.9	از ا	2.8	Ĭ	1	1 ,	ND	1.5	01.0
Endosulfan sulfate	9.5	Lī	1.4	ľ	18	اسا	ND	1	
Endrin aldehyde	1.4	ا ا	2.2	ادّا	1.2	l J	ND	1	
Endrin ketone	0.72	ľ	19	บ้า	18	این	ND	1	1
Gamma Chlordane	0.74	ر ا	3	J	9.4	Luj	ND	3.24 4	17.64
gamma-BHC (Lindane)	0.74 4.8	ر ا	9.9	וטו	9.4	UJ	ND	2.37	4.99
	4.8	1 3	9.9	UJ	9.4	103	ND	2.37	16
Heptachlor epoxide	4.0	,	9.9	1 03	5. 4	اسا	שויו	2.47	10
Dioxins (ug/kg) 2,3,7,8-TCDD TEQ Mammai ⁵	0.0134195				0.0194186		0.0125		

Backround = 2 x average concentration from reference areas

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ Contamin. Toxicol. 39:20-31

² Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy. August, 1993

Guidelines for sum DDT

Guidelines for Chlordane

Mammal TEQ values were calculated for 2,3,7,8-TCDD bolded numbers exceed TEC value or Ontario LEL value

shaded numbers exceed PEC value

Table 7-9

Number of Taxa, Number of Organisms, and Three Dominant Taxa In Dead Creek Section F and Borrow Pit Lake Samples

Sauget Area I

Location	Station	Number of Organisms	Number of Taxa	Dominant Taxon*	2nd Dominant Taxon	3rd Dominant Taxon	Total Organic Carbon, percent
	F-1	156	16	Chironomidae	Sphaeriidae	Chironomidae	4.0
Dead Creek Section F	F-2	154	11	Ceratopogonidae	Oligochaeta	Ceratopopogonidae	14
	F-3	358	17	Oligochaeta	Oligochaeta	Chironomidae	6.1
	BP-1	126	18	Oligochaeta	Odonata	Oligochaeta	6.7
Borrow Pit Lake	BP-2	262	17	Oligochaeta	Oligochaeta	Ceratopogonidae	4.5
	BP-3	151	14	Oligochaeta	Oligochaeta	Oligochaeta	3.3
Prairie du Pond Creek	PDC-1	92	8	Oligochaeta	Ceratopogonidae	Oligochaeta	1.2
(Reference Area 1)	PDC-2	148	9	Oligochaeta	Chaoboridae	Oligochaeta	2.3
D-f A 2	REF2-1	4420	16	Oligochaeta	Ceratopogonidae	Chironomidae	1.3
Reference Area 2	REF2-2	87	13	Oligochaeta	Ceratopogonidae	Chironomidae	2.0

^{*}Dominant taxa were calculated at the genus or species level but expressed as higher taxa.

Table 7-10

Diversity Indices for Dead Creek Section F, the Borrow Pit Lake, and Reference Areas

Sauget Area I

· ·	H' (Shannon-Weaver	Relative H'	λ (Simpson's
Summation of Replicates	Index (natural log))a	(H'/H'max) ^b	Index) ^c
F-1	2.28	0.82	0.14
F-2	1.66	0.69	0.25
F-3	1.60	0.56	0.31
BP-1	2.53	0.87	0.11
BP-2	2.09	0.74	0.23
BP-3	1.56	0.59	0.35
PDC-1	0.66	0.32	0.74
PDC-2	0.58	0.26	0.79
REF2-1	1.09	0.39	0.53
REF2-2	1.24	0.48	0.49

Notes:

- a: Shannon-Weaver is an index which measures species diversity. The higher the number, the greater the species diversity.
- b: Relative H' shows how close the sample is to maximum diversity, even distribution of organisms among the taxa is represented by "1".
- c: Simpson's is an index which measures the probability of two randomly selected organisms from a sample belonging to the same taxon. It is indirectly proportional to heterogeneity (the higher the value, the more homogeneous the sample.

Table 7-11
Community Composition of Six Major Taxonomic Groups
Sauget Area I

Station	Taxa Group (6 Total)	Number of Organisms	Relative Abundance (%)
F-1	Chironomidae	74	47.44
F-1	Mollusca	34	21.79
F-1	Non-Chironomid Insects	26	16.67
F-1	Oligochaeta	22	14.10
F-2	Non-Chironomid Insects	96	62.34
F-2	Oligochaeta	44	28.57
F-2	Chironomidae	14	9.09
' <u>-</u>	O TIM O TIO TI MAGE		0.00
F-3	Oligochaeta	286	81.25
F-3	Chironomidae	36	10.23
F-3	Non-Chironomid Insects	24	6.82
F-3	Mollusca	6	1.70
BP-1	Non-Chironomid Insects	56	44.44
BP-1	Oligochaeta	48	38.10
BP-1	Chironomidae	12	9.52
BP-1	Other*	10	7.94
BP-2	Oligochaeta	178	67.94
BP-2	Chironomidae	54	20.61
BP-2	Non-Chironomid Insects	30	11.45
BP-3	Oligochaeta	122	80.79
BP-3	Non-Chironomid Insects	17	11.26
BP-3	Chironomidae	12	7.95
PDC-1	Oligochaeta	85	92.39
PDC-1	Non-Chironomid Insects	6	6.52
PDC-1	Chironomidae	1	1.09
PDC-2	Oligochaeta	138	93.24
PDC-2	Chironomidae	4	2.70
PDC-2	Non-Chironomid Insects	4	2.70
PDC-2	Crustacea	1	0.68
PDC-2	Mollusca	11	0.68
REF2-1	Oligachasta	3210	70.60
REF2-1	Oligochaeta Non-Chironomid Insects	820	72.62 18.55
REF2-1	Chironomidae	320	7.24
REF2-1	Mollusca	50	1.13
REF2-1	Crustacea	20	0.45
NLI-Z-1	Ciustacea	20	0.40
REF2-2	Oligochaeta	62	71.26
REF2-2	Chironomidae	14	16.09
REF2-2	Non-Chironomid Insects	11	12.64

^{*}Hirudinea and Nematoda

Table 7-12
Hilsenhoff's Biotic Index of Organic Stream Pollution
Sauget Area I

Summation of Replicates BP-1 BP-2 BP-3 F-1 F-2 F-3 PDC-1 PDC-2 REF2-1	Hilsenhoff's Biotic Index (Expanded to Include Non-Arthropod Invertebrates) 7.88 8.86 9.18 7.63 6.71 8.65 9.55 9.69 9.42
REF2-2	9.04
Value of Biotic Index	Degree of Impairment
0 - 3.5 3.51 - 4.5	None Possible/Slight
4.51 - 5.5	Some
5.51 - 6.5	Fairly Significant
6.51 - 7.5	Significant
7.51 - 8.5	Very Significant
8.51 - 10.0	Severe

^{*}Adapted from Hilsenhoff, 1987.

Table 7-13 Hyalella azteca Acute Toxicity Results Sauget Area I

Results of 10 day Hyalella azteca Acute Toxicity Tests

Survival significantly lower than lab	control *P<0.	<u>05</u>							
ID	Survival (%)	Growth (mg)							
Lab Control 86 0.223									
None from Section F or Borrow	Pit Lake								
Growth Significantly lower than lab	control P<0.05								
ID	Survival (%)	Growth (mg)							
Lab Control	86	0.202							
Borrow Pit 1	89	0.156							
Borrow Pit 1 Dup.	94	0.154							
Borrow Pit 3	91	0.154							
Survival and Growth NOT significar	ntly lower than I	ab control							
ID	Survival (%)	Growth (mg)							
Lab Control	86	0.202							
Creek Section F-1	91	0.221							
Creek Section F-2	86	0.219							
Creek Section F-3	83	0.183							
Borrow Pit 2	96	0.172							
		ľ							
Lab Control	98	0.268							
PDC-1 (reference)	98	0.254							
PDC-2 (reference)	98	0.404							
Reference 2-1	98	0.393							
Reference 2-2	98	0.335							

Table 7-14

Hyallela azteca 42 Day Chronic Survival, Growth, And Reproduction Results

Sauget Area I

	<u>ID</u>	Day 28 Mean Survival (%)	Day 28 Mean Dry Weight (mg)	Day 35 Mean Survival (%)	Day 42 Mean Survival (%)	Day 42 Mean Dry Weight (mg)	Day 42 Mean Number of Neonates/Female
Lotic, creek habitat	PDC-1 (reference)	90	0.443	83	79	0.346	2.6
•	PDC-2 (reference)	89	0.648	85	80	0.498	6.2
	Creek Section F-1	91	0.639	89	84	0.397	4.8
	Creek Section F-2	90	0.554	74	70	0.447	3.8
	Creek Section F-3	89	0.661	85	76	0.406	4.8
	Ref-2-1 (creek portion)	70 *		64	65	0.459	2.3
							· · · · · · · · · · · · · · · · · · ·
Lentic, pond habitat	Ref-2-2	87	0.458	85	83	0.351	3.4
	Borrow Pit 1	93	0.594	88	83	0.380	4.1
	Borrow Pit 1 Dup.	89	0.636	80	75	0.423	4.2
	Borrow Pit 2	82	0.563	74	73	0.390	4.3
	Borrow Pit 3	95	0.470	86	84	0.322	5.3
	No lentic	samples exhibi	ited statistically s	igniticant redu	ctions in respo	onse compared	to Ref-2-2.
Laboratory Controls	12552	55	0.982	51	46	0.231	0.6
	12615	62	0.296	36	33	0.299	1.8
	12622	55	0.501	38	35	0.377	4.0
	12668	73	0.477	65	59	0.293	2.2

Table 7-15
Acute Sediment Toxicity Testing Results with *Chironomus tentans*Sauget Area I

Chironomus tentans Acute Toxicity Results (Day 10)

Survival si	gnificantly lower than	lab control F	P<0.05	
	ID	Survival (%)	Growth (mg)	Interpretation
_	Lab Control	94	1.761	
]	Borrow Pit 1	64	2.643	
1	Borrow Pit 1 Dup.	40	4.071	
	Borrow Pit 2	14	0.956	Acute toxicity
	Borrow Pit 3	53	2.996	
	Creek Section F-1	31	2.686	Acute toxicity
	Creek Section F-2	16	0.053*	Acute toxicity
	Creek Section F-3	10	0.969	Acute toxicity
_	Lab Control	100	2.065	
ł	PDC-1 (reference)	16	1.052*	Acute toxicity
	PDC-2 (reference)	55	2.699	
i	Reference 2-1	13	0.346*	Acute toxicity
	Reference 2-2	11	1.409	Acute toxicity

^{*} Significant difference in growth.

Table 7-16
Results of *Chironomus tentans* Chronic Survival, Growth, Emergence, and Reproduction Toxicity Tests
Sauget Area I

	ID	Day 20 Mean Survival (%)	Day 20 Mean Ash Weight (mg)	Emergence Proportion (%)	Mean Eggs Hatched/ Female	Mean Days Survived, Female	Mean Days Survived, Male
Lab Control	12622	46	2.959	45	554	3.1	4.9
	Borrow Pit 1	0.		5*	0*	0*	0.7*
	Borrow Pit 1 Dup.	0*		8*	127*	0.3*	0.8*
	Borrow Pit 3	6*		14*	106*	0.8*	1.2*
Lab Control	12668	65	2.923	69	354	3.6	4.3
	PDC-2 (reference)	69	3.074	13*	249	1.1*	1.4*
	PDC-2 (reference)		3.074 lifferent from corre				1

Note: Samples exhibiting acute toxicity were not tested for chronic toxicity.

Table 7-17
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

		Dead Creek Floodplain			Dead Creek and Borrow Pit Lake		
:	-	Wet/			Dead & Prairie		
		Upland	Wet/Dry	Riparian	du Pont	Borrow Pit	Mississippl
Common Name	Scientific Name	Shrubs .	Field	Woods	Creeks	Lake	River
AMPHIBIANS							
American Toad	Bufo americanus	0	×	×	×	x	
Gray Treefrog	Hyla versicolor	X		. 0	X	X	
Pickerel Frog	Rana palustris	X	0	. X	x	×	
REPTILES							
Red-eared Slider	Pseudemys scripta				0		x
Painted Turtle	Chrysemys picta	•			0	0	X
	Cinydomyo piola		:			, 0	. ^
				•			
				•			
BIRDS							,
Great Blue Heron	Ardea herodias		×	. 0		x	0
Great Egret	Casmerodius albus	•	0		0	0	o
Snowy Egret	Egretta caerulea	•			Ö	Ö	ō
Little Blue Heron	Egretta thula				0	0	0
Cattle Egret	Bubulcus ibis		0				
Green-backed Heron	Butorides striatus	0		. X		0	0
Black-crowned Night-Heron	Nycticorax nycticorax			X	0	X	0
Wood Duck	Aix sponse	×		×	0	X	×
Mallard	Anas platyrhynchos	x	Х	×	0	X	x
Turkey Vulture	Cathartes aura	X	0	×		X	
Bald Eagle	Haliaeetus leucocephalus			old nest	X		x
Red-tailed Hawk	Buteo jamaicensis	X	0	0			
American Kestrel	Falco sparverius	0	0				
Nothern Bobwhite	Colinus virginianus	0	X				
Killdeer	Charadrius vociferus		0				
Rock Dove	Columba livia		X		_		
Mourning Dove	Zenaida macroura	0	0	0			
Yellow-billed Cuckoo	Coccyzus americanus	О		0			•
Chimney Swift	Chaetura pelagica	0	X	×	0	0	×
Belted Kingfisher	Ceryle alcyon				0	0	0
Red-headed Woodpecker	Melanerpes erythrocephalus			0	•		•

Table 7-17
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

		Dead Creek Floodplain			Dead Creek an		
		Wet/			Dead & Prairle		
		Upland	Wet/Dry	Riparian	du Pont	Borrow Pit	Mississippi
Common Name	Scientific Name	Shrubs	Field	Woods	Creeks	Lake	River
Downy Woodpecker	Picoides pubescens	0		0			
Eastern Phoebe	Sayomis phoebe	×		0	0	X	×
Eastern Kingbird	Tyrannus tyrannus	0	0	•	x	X	×
Tree Swallow	Tachycineta bicolor	×	0	×	0	X	X
Bank Swallow	Riparia riparia	x	0	×	X	X	x
Cliff Swallow	Hirundo pyrrhonota	x	0	×	x	X	×
Barn Swallow	Hirundo rustica	×	0	×	0	0	×
Blue Jay	Cyanocitta cristata	×		О	-	· ·	^
American Crow	Corvus brachyrhynchos	×	0	0			
Carolina Chickadee	Parus carolinensis	x		O			
Tufted Titmouse	Parus bicolor			. 0			
White-breasted Nuthatch	Sitta carolinensis			o			•
Brown Creeper	Certhia americana			Ö			=
Carolina Wren	Thryothorus Iudovicianus	0	•	X			
House Wren	Troglodytes aedon	0		Ô			
American Robin	Turdus migratorius	ō	0	ō			
Gray Catbird	Dumetella carolinensis	o	•	0			
Nothern Mockingbird	Mimus polyglottos	×	X	•			
Cedar Waxwing	Bombycilla cedrorum	Ô	^	0			
European Starling	Sturnus vulgaris	x	0	o			
Common Yellowthroat	Geothylpis trichas	ô	Ŭ	X			
Northern Cardinal	Cardinalis cardinalis	o		ô			
Indigo Bunting	Passerina cyanea	Ö	•	ō			
Song Sparrow	Melospiza melodia	Ö	0	X	•		
Red-winged Blackbird	Agelaius phoeniceus	Ö	o	ô	0	0	
Common Grackle	Quiscalus quiscula	Ö	X	o	O	O	
Northern Oriole	Icterus galbula	J	^	0			
American Goldfinch	Carduelis tristis	0	0	0			
	Passer domesticus	O	X	U			
House Sparrow	Passai dollasticus		^				
MAMMALS							
Gray Squirrel	Sciurus carolinensis	0		0			
Fox Squirrel	Sciurus niger			0			
Beaver	Castor canadensis			0	0	0	0

Table 7-17
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

		Dead Creek Floodplain Dead Cree				eek and Borrow Pit Lake		
		Wet/			Dead & Prairie			
		Upland	Wet/Dry	Riparian	du Pont	Borrow Pit	Mississippi	
Common Name	Scientific Name	Shrubs	Field	Woods	Creeks	Lake	River	
Raccoon	Procyon lotor	O	×	. 0	0	0	0	
White-tailed Deer	Odocoileus virginianus	0	0	. 0	0			
FISH*		-						
Bowfin	Amia calva				so	0	•	
Gizzard Shad	Dorosoma cepedianum				so			
Grass Pickeral	Esox americanus				so			
Common Stoneroller	Campostoma anomalum	-			so			
Goldfish	Carassius auratus				so			
Carp	Cyprinus carpio				so	Ö		
Golden Shiner	Notemigonus crysoleucas		•		so			
Bigmouth Shiner	Notropis dorsalis				so			
Red Shiner	Notropis lutrensis			•	so	V =	•	
Sand Shiner	Notropis stramineus	•			so		•	
Fathead Minnow	Pimephales promelas		• -		so	•		
Creek Chub	Semotilus atromaculatus				so			
White Sucker	Catastomus commersoni				so			
Bigmouth Buffalo	Ictiobus cyprinellus				so			
Black Builhead	ictalurus melas				so			
Yellow Bullhead	Ictalurus natalis				so	0		
Channel Catfish	Ictalurus punctatus				O & SO			
Mosquitofish	Gambusia affinis				so			
Green Sunfish	Lepomis cyanellus				so			
Warmouth	Lepomis gulosus			•	so			
Orangespotted Sunfish	Lepomis humilis				so			
Bluegill	Lepomis macrochirus				so	0		
Largemouth Bass	Micropterus salmoides				so	0		
Black Crappie	Pomoxis nigromaculatus				so	0		
Freshwater Drum	Aplodinotus grunniens				so	0		
White Bass	Morone chrysops					0		
Crappie	Pomoxis spp.					0		
White Crappie	Pomoxis annularis					0		
Brown Bullhead	Ameiurus nebulosus					0		
Black Bullhead	Ameiurus melas				•	0		
Gar	Lepisosteus spp.				•	0		

Table 7-17
List of Fish and Wildlife Species Observed On and Near Dead Creek and the Borrow Pit Lake
Sauget Area I

Common Name	Dead Creek Floodpla Wet/						-	
	Scientific Name	Upland Shrubs	Wet/Dry Field	Riparian Woods	Dead & Prairie du Pont Creeks	Borrow Pit Lake	Mississippi River	
Spotted Gar	Lepisosteus oculatus						-	
Johnny Darter	Etheostoma nigrum					0	¢.	
Silver Carp	Hypophthalmichthys molitrix					Ö		
Quillback	Carpiodes cyprinus			•	,	. 0		
Moon eye	Hiodon tergisus		•	•		0		
Gold eye	Hiodon alosoides					0		
Walleye	Stizostedion vitreum			-		0		
Small unidentified fish		- •			O	O	О	
	X - Species Probably Utilizes Habitat O - Species Observed in the Habitat							
•	SO - Species Observed in the F	Prairie du Pont d	rainage during	1984 State Stre	eam Survey			

Table 7-18
Comparison of Plant Concentrations Between Dead Creek Section F and both Reference Areas
Sauget Area I

	Site		Reference	Reference
Compound	Maximum	Site Average	Maximum	Average
Herbicides (ug/kg)				
2,4-D	ND	ND	ND	ND
Dicamba	ND	ND	1.8	5.9
Dichloroprop	7	28.5	ND	ND
MCPA	ND	ND	ND	ND
MCPP	ND	ND	1300	1150
Metals (mg/kg)				.,,,,
Aluminum, Total	44	37	360	260
Antimony	0.13	0.115	ND	ND
Arsenic, Total	0.56	0.49	1.1	0.78
Barium, Total	ND	ND	ND	ND
Cadmium, Total	0.097	0.1735	ND	ND
Chromium, Total	ND	ND ND	0.53	0.39
Copper, Total	2.1	2	1.3	1.13
Iron	ND	ND	ND	ND
Lead, Total	1.2	0.82	0.64	0.47
Manganese	ND	0.82 ND	ND	ND
Mercury	ND ND	ND ND	ND ND	ND ND
•	ND	ND		ND
Molybdenum Nickel, Total	2.6	1.9	ND ND	ND ND
Silver	ND	ND	ND	ND
Zinc, Total	26	23	8.3	7.55
Total PCBs (ug/kg)	ND	ND	ND	ND
Pesticides (ug/kg) 4.4'-DDD	, ID	ND	ND	ND
	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	ND
4,4'-DDT	ND	ND 2005	ND	ND
Aldrin	0.81	3.905	1	4
Alpha Chlordane	ND	ND	ND	ND
delta-BHC	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Gamma Chlordane	3.1	5.05	ND	ND
gamma-BHC (Lindane)	ND	ND	ND	ND
-leptachlor	1.9	1.85	3.8	5.4
Heptachlor epoxide	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	ND
SVOC (ug/kg)				•
ois(2-ethylhexyl)phthalate	ND	ND	ND	ND
Di-n-butylphthalate	ND	ND	ND	ND
Diethylphthalate	ND	ND	ND	ND
Acenaphthylene	32	58.5	ND	ND
Fluoranthene	ND	ND	ND	ND
Benzo(b)fluoranthene	59	72	16	51
Benzo(k)fluoranthene	52	68.5	21	53
Benzo(a)pyrene	140	140	37	26
Benzo(a)pyrene	ND	ND	ND	ND
ndeno(1,2,3-c-d)pyrene	300	192.5	440	330
Dibenz(a,h)anthracene	76	80.5	400	290
2,3,7,8-TCDD TEQ Mammal	0.000202	0.00017	8.46E-05	5.75E-05

				SCE	SCENARIO			
	Mallard Duck-	ck- Diant	Mallard Duck-		Female Muskrat-	skrat- or F Plant	Female Muskrat-	skrat-
	Ingestion - Average	Average	Ingestion- Maximum		Ingestion-Average	verage	Ingestion-Maximum	faximum
	IBACN	I OAE	NOAFI	OAFI	NOAFI	OAF	NOAEI	LOAF
	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
Compound	Index	Index	Index	Index	Index	Index	Index	Index
2,4-D	NB B	NB	NB	NB	6.E-05	1.E-05	6.E-05	2.E-05
Dicamba	NB	NB	NB	NB NB	0.E+00	0.E+00	0.E+00	0.E+00
Dichloroprop	BN	NB	NB	NB	NB	NB	NB	NB B
MCPA	NB NB	NB NB	NB	NB NB	0.m+00	0.11+00	0.E+00	0.m+00
	n Z	2 0	n Z	2 2	מות ל	7 T T T T T T T T T T T T T T T T T T T	7 =+01	7 1 1 00
Antimony	בַּ בַּ	200	2 5	20 0	9 E-01	9 E-02	1 E+00	1.E-01
Arsenic, Total	2.E-05	7.E-06	4.E-02	2.E-02	1.E-01	æ	1.E-01	æ
Barium, Total	9.E-06	4.E-06	2.E-02	1.E-02	5.E-02	4.E-02	6.E-02	4.E-02
Cadmium, Total	2.E-05	2.E-06	7.E-02	5.E-03	1.E-01	1.E-02	2.E-01	2.E-02
Chromium, Total	2.E-05	5.E-06	6.E-02	1.E-02	3.E-05	æ	4.E-05	NB NB
Copper, Total	1.E-05	8.E-06	3.E-02	2.E-02	1.E-01	9.E-02	1.E-01	1.E-01
Iron	2 F.O.A	2 E-05	8 F-01	8 F-02	1.E-01	1 E-02	2.E-01	2 E-02
Manganese	3.E-07	NB !	8.E-04	NB .	1.E-02	3.E-03	2.E-02	6.E-03
Mercury	8.E-05	8.E-06	3.E-01	3.E-02	5.E-02	1.E-02	1.m.01	2.E-02
Molybdenum	4.E-0/	4.1-08	2.1-03	2 n o	0.1.02	3 n n	5 n d	20-11 E
Silver	NB C	NB	NB	NB i	0.E+00	0.E+00	0.E+00	0.E+00
Zinc, Total	4.E-04	4.E-05	1	1.E-01	1.E-01	5.E-02	1.E-01	7.E-02
Total PCBs	3.E-07	3.E-08	1.E-03	1.E-04	1.E-03	6.E-04	2.E-03	9.E-04
Total DDT	20.L-09	9.E-0/	7.E-02	Z.E-0.3	оп-04 -04	4 F-04	2 F.D.3	4 n n
Alpha Chlordane	1.E-09	3.E-10	4.E-06	8.E-07	4.E-06	2.E-06	6.E-06	3.E-06
delta-BHC	5.E-10	1.E-10	1.E-06	2.E-07	5.E-05	5.E-06	5.E-05	5.E-06
Dieldrin	1.E-07	NB	2.E-04	NB NB	1.E-03	1.E-04	1.11.03	1.E-Q4
Endosulfan	2.E-10	<u> </u>	9.E-07	NB NB	0.F-05	200	1.17.04	5 6
Endosultan II	4.1-10	200	1.11-06	ž ä	אררים הינים הינים	N C	л - п - С	2 0
Endrin aldehyde	7.E-07	7 E-08	2.E-03	2.E-04	5.E-04	5.E-05	8 III 0	8.E-05
Endrin ketone	6.E-07	6.E-08	2.E-03	2.E-04	4.E-04	4.E-05	6.E-04	6.E-05
Gamma Chlordane	2.E-07	4.E-08	4.E-04	9.E-05	6.E-04	3.E-04	6.E-04	3.E-04
gamma-BHC (Lindane	0.E+00	0.E+00	60	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00
Hentachlor enoxide	S 2	N N	NB 2	S 6	т. О	1.E-05	л Ф	1.E-05
Methoxychlor	æ	NB	NB	NB	1.E-05	5.E-06	2.E-05	8.E-06
Total PAHs	2.E-06	2.E-07	0.004956	5.E-04	•	•		
bis(2-ethylhexyl)phthal	0	NB	0	NB	0.E+00	0.E+00	0.E+00	0.11
Di-n-butylphthalate	0	0	0	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00
Diethylphthalate	NB	NB	· NB	· NB	0.11	2	0.E+00	2 2
Fluoranthene	•	•	*	•	5 E-06	8 a	5.E-06	8 8
Benzo(b)fluoranthene	•	•	•		NB	NB	8	æ
Benzo(k)fluoranthene	ŧ	•	*	•	NB	NB	NB	NB
Benzo(a)pyrene	*	•	•	•	1.E-01	1.E-02	1.E-01	1.E-02
Indeno(1,2,3-c-d)pyrer					S S	N N	N N	NB NB
Dibenz(a,h)anthracene	1 - 0	1 00	3 R 23	о П Оз	NB NB	7 E 03	1 5 00	100
Dioxin - IEC	1.11-05	ו.ה-טס	3.E-02	3.6-03	7.6-01	7.6-02	1.6700	- in

					SCENARIO	ARIO				
	River Otter-	er -	River Otter-	er i	Great Blue Heron-	e Heron-	Great Blue Heron-	e Heron⊶ t Fish	Great Blue Her	Great Blue Heron
	Ingestion-	- Average	Ingestion	Ingestion-Maximum	Ingestion-Average	g e	Average**		Ingestion-	Ingestion-Maximum
	DAG	13401	I DVCI	OVE	NOAE		NOAE	IOAEI	NOAE	DAEI
	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
Compound	Index	Index	Index	index	Index	Index	Index	Index	Index	Index
2,4-D	9.E-08	2.E-08	9.E-06	2.E-06	NB NB	NB	NB	R	NB	NB
Dicamba	3.E-05	9.E-06	1.E-03	3.E-04	NB	NB B	NB	NB	NB.	BN
Dichloroprop	NB	NB	NB	NB B	NB	NB	NB	NB	NB	NB NB
MCPA	5.E-04	2.E-04	6.E-02	2.E-02	S S	8	8 B	NB NB	NB NB	NB NB
Aluminum Total	3 F C	3 E - 60	2 11 10	100	4 F 50	200	3 6	Z 6	8 F-03	200
	3.E-04	3.E-05	3.E-02	3.E-03	R I	8	NB	NB E	NB	8
Arsenic, Total	6.E-05	NB	7.E-03	NB	8.E-05	3.E-05	5.E-08	2.E-08	1.E-Q	5.E-05
Barium, Total	2.E-04	2.E-04	3.E-02	2.E-02	3.E-04	1.E-04	2.E-07	9.E-08	7.E-04	3.E-04
Cadmium, Total	2.E-05	2.E-06	2.E-03	2.E-04	0.E+00	0.6+00	3 11 00	7 E-06	0.11+00	0.E+00
Copper Total	т Р	1.E-04	2.E-02	2.E-02	3.E-03	2.E-03	2.E-06	1.E-06	6.E-03	4.E-03
lon	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB
Lead, Total	л. Ф	1.E-05	2.E-02	2.E-03	4.E-02	4.E-03	3.E-05	3.E-06	8.E-02	8.E-03
Marcury	9 - - - - - - - - - - - - - - - - - - -	2 F-03	2.E+00	5 F-01	4.E+00	4 F-01	3.E-03	3.E-04	1.E+01	1.6+00
Molybdenum	8.E-05	8.E-06	1.E-02	1.E-03	4.E-05	4.E-06	3.E-08	3.E-09	5.E-05	5.E-06
Nickel, Total	1.E-05	5.E-06	1.E-03	6.E-04	5.E-06	4.E-06	3.E-09	2.E-09	9.E-06	6.E-06
Silver	4.E-07	4.E-08	3.E-05	3.E-06	8	NB NB	N N	NB NB	Z Z	N N
Zinc, Total Total PCRs	1 0 T	7 = 04	3 F-02	1 F-01	5 F-02	5 F-03	3.E-05	3.E-06	1 m 0	1.E-02
Total DDT	4.E-05	7.E-06	6.E-03	1.E-03	5.E-01	5.E-02	3.E-04	3.E-05	1.E+00	1.E-01
Aldrin	2.E-07	4.E-08	0.E+00	0.E+00	NB	NB	NB	NB	NB	NB NB
Alpha Chlordane	8 F-06	2 T-08	7.T-04	2 F-04	9.E-03	3 F-08	9 F-11	2 F-11	2 F-07	3.E-03
Dieldrin	2.E-06	2.E-07	3.E-05	3.E-06	4.E-07	NB	3.E-10	NB	6.E-07	æ
Endosulfan I	2.E-07	8	3.E-05	NB	8.E-09	NB	5.E-12	NB	1.E-08	NB
Endosulfan II	5.E-07	8 8	0.E+00	NB	0.E+00	NB	0.E+00	N N	0.E+00	N N
Endon aldehyde	4.507	A FLOR	אם ה ה ה	5 F-06	1 - C	1 10	7 F-09	7 E-10	1.E-05	1 F-06
Endrin ketone	1.E-06	1.E-07	2.E-05	2.E-06	9.E-06	9.E-07	6.E-09	6.E-10	1.E-05	1.E-06
Gamma Chlordane	6.E-06	3.E-06	1.E-03	6.E-04	2.E-04	3.E-05	1.E-07	2.E-08	4.E-04	9.E-05
gamma-BHC (Lindane	3 F-09	3 F-06	6.E-07	3 F-04	NB NB	NB NB	4.E-17	4.E-12	NB S.EC	NB S.E-09
Heptachlor epoxide	3.E-07	3.E-08	3.E-05	3.E-06	NB	NB	NB	NB	NB	NB
Methoxychlor	9.E-08	5.E-08	0.E+00	0.E+00	NB	NB	NB	NB	NB	NB
Total PAHs	2 .		3		3.E-04	3.E-05	2.E-07	2.E-08	3.11-04	3.E-05
Di-n-butviohthalate	2.E-07	5.F-08	2.E-05	5.F-06	1.E-02	1.E-03	7.E-06	7.E-07	1.E-02	1.E-03
Diethylphthalate	2.E-08	8	2.E-06	NB	NB	NB	NB	NB	NB	NB
Acenaphthylene	8	8	S S	S S			4.3E-05	4.3E-06		
Fluoranthene	8.E-09	E E	0.E+00		•	•			•	
Benzo(k)fluoranthene	200	200	200	200	•	•			•	•
Benzo(a)pyrene	2.E-06	2.E-07	0.E+00	0.E+00	•	•			٠	•
Indeno(1,2,3-c-d)pyrer	NB	NB	NB	NB BN	•	•				
Dibenz(a,h)anthracene	NB NB	NB NB	NB	NB NB	6 E-03	6 5 03			1 .	1 - 03
Dioxin - IEC	ο π-03	5.E-04	0.F-01	0.E-02	5.E-02	0.0-03			1.6-3.1	1.6-02

				SCE	SCENARIO			
	Female Muskrat-	/uskrat-	Female Muskrat-	luskrat-	River Otter-	it Clam	River Otter-	er Clam
	Ingestion	Ingestion-Average	Ingestion	Ingestion-Maximum	Ingestion	Ingestion-Average	Ingestion	Ingestion-Maximum
		2	NO.E	1040	NOAE	2	NOAE!	2
_	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
Compound	Index	Index	Index	Index	Index	Index	Index	Index
2,4-D	3.E-05	6.E-06	3.E-05	6.E-06	9.E-08	80-3.2	9.E-06	2.E-06
Dichlomoron	Z.T-04	5-7.5 C-1.5	V.T+00	NE POO	מת ל מינים	VE-0/	20.0	U.E.FOO
MCPA	1.E-03	4.E-04	0.E+00	0.E+00	3.E-06	1.E-06	0.E+00	0.E+00
MCPP	6.E-01	2.E-01	6.E-01	2.E-01	3.E-03	1.E-03	3.E-01	1.E-01
Aluminum, Total	4.E+01	4.E+00	5.E+01	5.E+00	1.E-01	1.E-02	2.E+01	2.E+00
Antimony Arsenic Total	9.E-02	9.E-03	9.E-02	9.E-03	2 3.T.O.	3.E-05	9 F-02	NB NB
Banum, Total	8.E-02	6.E-02	1.E-01	8.E-02	2.E-04	2.E-04	3.E-02	2.E-02
Cadmium, Total	6.E-02	6.E-03	7.E-02	7.E-03	3.E-04	3.E-05	3.E-02	3.E-03
Chromium, Total	1.E-04	NB	2.E-04	NB NB	6.E-07	NB	9.E-05	NB NB
Copper, Total	4.E-02	3.E-02	4.E-02	3.5-02	ir 5 4	1.T-U4	7.E-02	ND-07
Lead. Total	3.E-02	3.E-03	4.E-02	4 E-03	1.11.04	1.E-05	1.E-02	1.E-03
Manganese	5.E-02	1.E-02	7.E-02	2.E-02	1.E-04	4.E-05	2.E-02	5.E-03
Mercury	1.E-02	2.E-03	1.E-02	3.E-03	3.E-05	7.E-06	4.E-03	9.E-04
Nickel Total	2002	3 II	0.E-02	מה לט	ה ה ה ה ה	7 1 0	1	20 T C
Silver	5.E-04	5.E-05	4.E-04	4.E-05	2.E-06	2.E-07	2.E-04	2.E-05
Zinc, Total	5.E-02	2.E-02	7.E-02	4.E-02	2.E-04	1.E-04	3.E-02	2.E-02
Total PCBs	2.H-04	1.H-04	0.E+00	0.E+00	4 F-07	4.E-0/	3 F OS	0.E+00
Aldrin	6.E-05	1.E-05	0.E+00	0.E+00	2.E-07	4.E-08	0.E+00	0.E+00
Alpha Chlordane	2.E-06	9.E-07	4.E-06	2.E-06	5.E-09	3.E-09	1.E-06	6.E-07
delta-BHC	4.E-04	4.E-05	2.E-04	2.E-05	8.E-07	8.E-08	2.E-05	2.E-06
Dieldrin Endosulfan I	7 E-04	5.E-05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NR CO	207	Z.E-0/	3 F-05	NR-00
ndosulfan II	2.E-04	NB E	0.E+00	Na i	5.E-07	Na i	0.E+00	NB I
Endosulfan sulfate	1.E-04	NB	2.E-04	BN	4.E-07	NB	6.E-05	W.
Endrin aldehyde	2.E-04	2.E-05	2.E-04	2.E-05	4.E-07	4.E-08	5.E-05	5.E-06
Endrin ketone	4 in 2	4.E-05	1.r-04	3 T.F-05	n 1-	7.E-0/	1 FLOS	2.E-06
oamma-BHC (Lindane	2.E-06	2.E-07	2.E-06	2.E-07	6.H-09	6.E-10	6.E-07	6.E-08
Heptachlor	8.E-03	8.E-04	8.E-03	8.E-04	4.E-05	4.E-06	4.E-03	4.E-04
Heptachlor epoxide	1.E-04	1 E-05	1.E-04	1.E-05	3.E-07	3.E-08	3.E-05	3.E-06
Methoxychlor	7.E-04	3.E-04	6.E-04	3.E-04	3.E-06	2.E-06	3.E-04	1.E-04
Total PAHs	3	2	0 1		3 77 80	3 T R	л О3	, E.O.
Di-n-hutvinhthalate	2 II	7 = 07	0.E+00	0 F+00	26-05	25-06	0.E+00	0.E+00
Diethylphthalate	1.E-05	NB I	2.E-05	æ	7.E-09	2.E-09	1 E-05	8
Acenaphthylene	NB	NB	NB	NB.	NB NB	NB	NB	NB.
Fluoranthene	2.E-06	NB	0.E+00	NB NB	8.E-09	æ	0.E+00	S S
Benzo(b)fluoranthene	<u>N</u>	N N	NB NB	S S	<u> </u>	N N	N C	Z Z
Benzo(a)nyrene	5 7 6	9 E-05	0 F+20	0 F+00) []	2 F-07	0 + 00	0.E+00
Indeno(1,2,3-c-d)pyrer	NB I	NB S	NB	NB	NB I	NB	NB	NB
Dibenz(a,h)anthracene	NB	NB	NB	NB NB	NB	NB	NB	S S
Dioxin - TEQ	1.E-01	1.E-02	2.E-01	2.E-02	4.E-04	4.E-05	6.E-02	6.E-03

				Ι.	SCENARIO		7	
	Borrow Pit Shr	Maliard Duck- Borrow Pit Shrimp	Borrow Pit Shrimp	it Shrimp	Borrow Pit Fish	it Fish	Borrow Pit Fish	f Fish
	Ingestion	Ingestion-Average	Ingestion	Ingestion-Maximum	Ingestion-Average		Ingestion	Ingestion- Maximum
	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL
	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard	Hazard
Compound	Index	Index	Index	Index	Index	Index	Index	index
2,4-D	NB NB	NB	NB	NB NB	NB	NB	S B	8
Dichloroprop	200		2 0	20				2 2
MCPA	N S	NB 2	8	NB G	8	N 0	Z	8
MCPP	NB I	NB	NB	NB	NB	NB	æ	NB
Aluminum, Total	2.E-03	NB	3.E-01	NB	3.E-05	NB	4.E-02	8
Antimony	NB NB	NB NB	NB	NB	NB	NB	NB B	NB
Arsenic, Total	4.E-05	2.E-05	5.E-03	2.E-03	1.E-07	5.E-08	- im	4.E-05
Cadmium, Total	2.E-05		3 E-03	2.E-04	0.E+00	0.E+00	0.E+00	0.E+00
Chromium, Total	1 E-03	2.E-04	1.E-01	3.E-02	1.E-04	2.E-05	1.E-01	2.E-02
Copper, Total	6 E-04	4 E-04	7.E-02	6.E-02	3.E-06	2.E-06	2.E-03	2.E-03
iron	NB NB	NB NB	NB NB	NB	NB	NB	N N	NB NB
Manganese	2.E-05	NB S	2.E-03	NB	4.E-08	NB 4	6.E-05	S S
Mercury	2.E-04	2.E-05	4.E-02	4.E-03	2.E-03	2.E-04	5.E+00	5.E-01
Molybdenum	3.E-06	3.E-0/	0.E-04	5.E-05	6.E-08	6.E-09	4.E-05	7 1.T-C8
Silver	NB S	NB S	NB 5	NB C	NB S	NB C	Na i	S S
Zinc, Total	4.E-03	4.E-04	5.E-01	5.E-02	2.E-04	3.E-05	2.E-01	2.E-02
Total PCBs	1.E-06	1.E-07	0.E+00	0.E+00	1.E-04	1.E-05	2.E-01	2.E-02
Aldin	4.E-05	4.E-06	1.E-02	1.E-03	1.E-03	1. 1. 4. 4.	1.E+00	Z IT
Alpha Chlordane	1.E-08	2 E-09	2.E-06	5.E-07	5.E-07	9.E-08	7 E-04	1 E-04
delta-BHC	3.E-08	8.E-09	2.E-07	6.E-08	2.E-10	5.E-11	1.E-07	4.E-08
Dieldrin	5.E-07	NB	1.E-05	NB NB	7.E-10	S S	5.E-07	8
Endosulfan II	1.E-08	N d	0.E+00	S 2	0.E+00	8	0.E+00	8
Endosulfan sulfate	9.E-09	NB	2.E-06	NB	2.E-11	NB	1.E-08	NB
Endrin aldehyde	2.E-06	2.E-07	4.E-04	4.E-05	2.E-08	2.E-09	1.E-05	1.E-06
Endrin ketone	3.E-06	8.E-07	3 -1.E-04	1.E-05	1.E-08	1.E-09	1.11-05	3 III
gamma-BHC (Lindane	3.E-08	3.E-09	4.E-06	4.E-07	1.E-10	1.E-11	7.E-08	7.E-09
Heptachlor	NB	NB	NB	NB	NB	NB	NB	NB
Heptachlor epoxide	NB	NB	NB	NB	NB	NB	NB	8
Methoxychlor	NB	NB	RB	NB	NB	NB	NB	NB
Total PAHs	8.E-08	8.E-09	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00
Di-n-butvlohthalate	3.E-05	3.E-06	0.E+00	0.E+00	5.E-05	5.E-06	3.E-02	3.E-03
Diethylphthalate	NB	NB	NB.	NB	NB	NB	NB	NB
Acenaphthylene	•	•	•		•			
Fluoranthene		•			•		•	•
Benzo(b)filioranthene				•			•	
Benzo(a)pyrene	٠	•	•	•	*	•	•	•
Indeno(1,2,3-c-d)pyrer				*		•	•	
Dibenz(a,h)anthracene		200	3	2	1 .	20.00	n .	3
Dioxin - TEQ	4.E-04	4.E-05	5.E-02	5.E-03	1.E-04	1.E-05	1.E-01	1.E-02

Notes:

NA=Not available/applicable

NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

PAHs were evaluated as total PAHs for birds, but for individual compounds for PAHs were evaluated as total PAHs for birds, but for individual compounds for Average scenario uses area use factors and migration factors where appropriate Maximum scenario assumes receptor is restricted to site

Maximum scenario assumes receptor foraging area (3 mile radius)

Table 7-20 Comparison of Surface Water Concentrations in Dead Creek Section F to Wildlife Benchmarks Sauget Area I

			<u> </u>		<u> </u>		NOAEL-	Based Benchmarks 1
Sample ID:	SW-CSF-S1 Concentration	 	SW-CSF-S2 Concentration		SW-CSF-S3 Concentration	ER Q		
Compounds	Concentration	ERU	Concentration	EKW	Concentration	EK W	Water	Endpoint Species
Herbicides (ug/l)	ND	1	ND		ND			
Metals (mg/l)	j	ļ			}		l	
Aluminum	0.039	J	0.15	J	0.55		4.474	Whitetail deer
Arsenic	0.01	U	0.0032	J	0.0049	J	0.292	Whitetail deer
Barium	0.13		0.13		0.12		23.1	Whitetail deer
Cadmium	0.005	U	0.005	U	0.005	υ	4.132	Whitetail deer
Chromium	0.01	lυ	0.01	lu	0.01	υ	4.3	Rough-winged Swallov
Copper	0.0016	ľ	0.002	Ĭĭ	0.012	ŭ	65.2	Whitetail deer
Iron	0.5	١	0.55	ľ	1	ľ	NA	777 Motern Goor
Lead	0.005	lυ	0.0022	J	0.0037	l, l	4.86	Rough-winged Swallow
Manganese	0.082	ĭĭ	0.0022	ŭ	0.0037	ľi l	377	Whitetail deer
-	0.002	ľ. i	0.0002	1	1	ľ. I	1.93 ²	ľ
Mercury	1	U	0.0002 0.01	U U	0.0002	n U		Rough-winged Swallow
Molybdenum	0.01	U.		I -	0.0028	I". I	0.6	Whitetail deer
Nickel	0.0069	l.	0.013	lu J	0.021	J u	171.36	Whitetail deer
Silver	0.01	U	0.01	ľ	0.01	l ^o i	NA SO A	
Zinc	0.0073	J	0.035		0.075		62.3	Rough-winged Swallow
PCB (ug/l)	ND		ND]	ND			
Pesticides (ug/l)								
4.4'-DDT	0.1	υ	0.1	U	0.1	υ	12 3	Rough-winged Swallow
Aldrin	0.05	U I	0.05	U	0.05	U	857	Whitetail deer
Alpha Chlordane	0.05	υ	0.05	U I	0.05	U I	9200 4	Rough-winged Swallow
delta-BHC	0.012	Ū	0.012	υ .	0.012	lū	100 5	River Otter
Dieldrin	0.1	Ŭ	0.1	υ	0.1	Ŭ	86	Whitetail deer
Endosulfan I	0.05	U	0.05	U	0.05	U	640 a	Whitetail deer
Endosulfan II	0.1	lu l	0.1	υ	0.1	lυ	640 a	Whitetail deer
Endosulfan sulfate	0.1	Ū	0.1	υ	0.1	lu l	640 a	Whitetail deer
Endrin	0.1	บ	0.1	Ū	0.1	ŪΙ		Rough-winged Swallow
Endrin aldehyde	0.1	Ū	0.1	Ū.	0.1	lu l	43 b	Rough-winged Swallow
Endrin ketone	0.1	Ü	0.1	lŭ	0.1	lũ	43 b	Rough-winged Swallow
Gamma Chlordane	0.05	Ü	0.05	ŭ	0.05	lŭ l	9200 4	Rough-winged Swallow
gamma-BHC (Lindane)	0.019	Ŭ	0.019	ŭ	0.019	lŭ l	8590	Rough-winged Swallow
Heptachlor	0.05	ΰ	0.05	υ	0.05	υ	557	Whitetail deer
Heptachlor epoxide	0.05	Ŭ	0.05	Ü	0.05	υ	557 c	Whitetail deer
Methoxychlor	0.5	ŭ	0.5	Ü	0.5	Ü	17100	Whitetail deer
SVOC (ug/l)								
Acenaphthylene	10	U	10	U	10	u	NA	
Benzo(a)pyrene	10	Ü	10	U	10	U	2320	Whitetail deer
Benzo(a)pyrene Benzo(b)fluoranthene	10	U	10	_	10	U	2320 NA	AALIIGASII GASI.
	10	li l	10	_	10	li l		
Benzo(k)fluoranthene		Ü	10 1.8		1.8	U	NA 4730	Bough winged Swall
pis(2-Ethylhexyl)phthalate Di-n-butylphthalate	10	U I	1.6 10	U I	1.8 10	U	4730 470	Rough-winged Swallow Rough-winged Swallow
	10	υ	10	υ	-	U	470 10623000	
Diethylphthalate					10			Whitetail deer
Fluoranthene ndeno(1,2,3-cd)pyrene	0.7 10	N J	10 10	U	10 10	Ü	NA NA	
Dioxins, ug/l	1.0	- 		ř		ĚН	NA NA	
2,3,7,8-TCDD TEQ Mammal	9.01197E-06		1.5012E-06		1.5583E-06		0.0007	Little Brown Bat
2,3,7,8-TCDD TEQ Bird	8.92962E-06		8.784E-07	1	9.922E-07	1	0.0602	Rough-winged swallow

¹ Sample, BE, DM Opresko, GW Suter. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-86/R3. ² For inorganic Mercury only, does not include methyl mercury

NA indicates not available; ND indicates not detected.

- a Value for Endosulfan was used
- b Value for Endrin was used
- c Value for Heptachlor was used

³ Value represents DDT and metabolites

⁴ Value listed is for total chlordane

Table 7-21
Comparison of Surface Water Concentrations in the Borrow Pit Lake to Wildlife Benchmarks
Sauget Area I

							NOAEL-I	Based Benchmarks
Sample ID:	SW-BPL-S1 Concentration	ER Q	SW-BPL-S2 Concentration	ER Q	SW-BPL-S3 Concentration	ER Q		
Compounds		 		<u> </u>		-	Water	Endpoint Species
Herbicides (ug/l)	ND	ł	ND	l	ND			
Metals (mg/l)	3.4		0.71	1	0.65		4.474	Whitetail deer
Aluminum Arsenic	0.015	1	0.71	J.	0.65 0.012	Į Į	0.292	
Arsenic Barium	0.015		0.0079	ľ	0.012	i I	23.1	Whitetail deer Whitetail deer
Cadmium	0.005	U	0.12	lυ	0.045	U	4.132	Whitetail deer
Chromium	0.003	ľ	0.003	ŭ	0.005	U	4.132	Rough-winged Swallow
Copper	0.0074	ľ	0.0036	ľ	0.0048	ĭ	65.2	Whitetail deer
Iron	8.7	ľ	1.6	ľ	1.3	ĭ	NA	Willerall deel
Lead	0.02	ľ	0.002	Ľ	0.0029	li l	4.86	Rough-winged Swallow
Manganese	1.7		0.002	ľ	0.0029	ľ	377	Whitetail deer
_		ſ		[!		í I	1.93 ²	
Mercury	0.0002 0.0035	ļυ	0.0002	U :	0.0002	U		Rough-winged Swallow
Molybdenum	0.0035 0.015	ľ	0.01	ľ	0.004	۱, ۱	0.6	Whitetail deer
Nickel Silver	0.015	U I	0.012 0.01	n n	0.0077 0.01	Ω J	171.36 NA	Whitetail deer
	0.01		0.01	U	0.01	ľ, l	62.3	Daugh wiseed Swelley
Zinc						ľl	62.3	Rough-winged Swallow
PCB (ug/l)	ND		ND		ND	1		
Pesticides (ug/i)	1					1 1		
4,4'-DDT	0.1	U	0.1	U	0.1	U I	12 ³	Rough-winged Swallow
Aldrin	0.05	U	0.05	U	0.05	U	857	Whitetail deer
Alpha Chlordane	0.05	U	0.05	U	0.05	U	9200 4	Rough-winged Swallow
delta-BHC	0.00013	J	0.0022	J	0.012	υ	100 ⁵	River Otter
Dieldrin	0.1	U	0.1	υ	0.001	J	86	Whitetail deer
Endosulfan I	0.0024	J	0.05	U	0.0015	J	640 ª	Whitetail deer
Endosulfan II	0.1	u	0.1	u	0.1	lu l	640 a	Whitetail deer
Endosulfan sulfate	0.1	Ū	0.1	Ū	0.0032	ا آ	640 ª	Whitetail deer
Endrin	0.1	-	0.1	ŭ	0.0002	lj l	43 b	Rough-winged Swallow
Endrin aldehyde	0.0032	_	0.1	_	0.0016		43 ^b	Rough-winged Swallow
•	*****			-		ľ	43 ^b	
Endrin ketone	0.1		0.1	U	0.0027	l. I		Rough-winged Swallow
Gamma Chlordane	0.05		0.05	U.	0.05	<u> </u>	9200 4	Rough-winged Swallow
gamma-BHC (Lindane)	0.019		0.0038	l.	0.0024	l,	8590	Rough-winged Swallow
Heptachlor	0.0026	_	0.0022	J	0.0029	J	557	Whitetail deer
Heptachlor epoxide	0.00096		0.0009		0.05	Ų.	557 °	Whitetail deer
Methoxychlor	0.5	U	0.5	U	0.5	U	17100	Whitetail deer
SVOC (ug/l)								
Acenaphthylene	10	υ	10	U	10	U	NA	
Benzo(a)pyrene	10		10		10	U	2320	Whitetail deer
Benzo(b)fluoranthene	10		10		10	U	NA	
Benzo(k)fluoranthene	10		10	U	10	U	NA	
bis(2-Ethylhexyl)phthalate	1.8		1.8	U	1.8	U	4730	Rough-winged Swallow
Di-n-butylphthalate	10		10	υ	10	υ	470	Rough-winged Swallow
Diethylphthalate	10	U	10	U	10	U	10,623,000	Whitetail deer
Fluoranthene	10		10	U	10	U	NA	
Indeno(1,2,3-cd)pyrene	10	U	10	U	10	U_	NA	
Dioxins (ug/l)						(]		
2,3,7,8-TCDD TEQ Mammal ⁶	8.5902E-07		7.453E-07		4.8413E-07	! I	0.0007	Little Brown Bat
2,3,7,8-TCDD TEQ Bird b	3.4692E-07	1	3.475E-07	!	2.8163E-07	1	0.0602	Rough-winged swallow

¹ Sample, BE, DM Opresko, GW Suter. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory. June 1996. ES/ER/TM-86/R3.

² For inorganic Mercury only, does not include methyl mercury

³ Value represents DDT and metabolites

⁴ Value listed is for total chlordane

⁵ Value represents BHC-mixed isomers

⁶ Mammal and bird TEQ values were calculated for 2,3,7,8-TCDD

^a Value for Endosulfan was used

Table 7-22 Comparison of Shrimp Concentrations Between the Borrow Pit Lake and both Reference Areas Sauget Area I

	Site	Reference	Reference
Compound	Concentration	Maximum	Average
Herbicides (ug/kg)			
2,4-D	ND	ND	ND
Dicamba	ND	ND	ND
Dichloroprop	ND	ND	ND
MCPA	ND	ND	ND
MCPP	ND	4400	2700
Metals (mg/kg)		400	
Aluminum, Total	28	100	80 ND
Antimony	0.16	ND	ND 1.1
Arsenic, Total	ND	1.2	I.I ND
Barium, Total	ND I	ND ND	ND ND
Cadmium, Total	ND 0.33	_	0.27
Chromium, Total	0.23 8.3	0.28 16	12
Copper, Total	0.3 ND	ND	ND
Iron	0.39	0.61	0.50
Lead, Total Manganese	0.39 ND	ND	ND
Mercury	ND I	ND ND	ND ND
Molybdenum	ND ND	ND .	ND
Nickel, Total	ND I	ND ND	ND
Silver	0.090	0.062	0.06
Zinc, Total	16	17	16
Total PCBs (ug/kg)	ND	ND	ND
Pesticides (ug/kg)			
4,4'-DDD	ND	ND	ND
4,4'-DDE	ND	ND	ND
4,4'-DDT	ND	ND	ND
Aldrin	ND	ND	ND
Alpha Chlordane	ND	ND	ND
delta-BHC	ND	ND	ND
Dieldrin	ND	ND	ND
Endosulfan I	ND	ND	ND
Endosulfan II	ND	ND	ND
Endosulfan sulfate	ND	ND	ND
Endrin aldehyde	ND	ND	ND
Endrin ketone	ND	ND	ND
Gamma Chlordane	ND	ND	ND
gamma-BHC (Lindane)	ND .	ND	ND
Heptachlor	ND	ND	ND
Heptachlor epoxide	ND	ND	ND
Methoxychlor	ND	ND	ND
SVOC (ug/kg)		00	0.5
bis(2-ethylhexyl)phthalate	ND	98	95 ND
Di-n-butylphthalate	ND	ND	ND
Diethylphthalate	44 ND	59	58 ND
Acenaphthylene	ND ND	ND ND	ND ND
Fluoranthene			ND ND
Benzo(b)fluoranthene	ND ND	ND ND	ND ND
Benzo(k)fluoranthene Benzo(a)pyrene	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(a)pyrene	ND ND	ND ND	ND
Indeno(1,2,3-c-d)pyrene	ND ND	ND ND	ND
Dibenz(a,h)anthracene	ND ND	ND ND	ND ND
		144	. 170
2,3,7,8-TCDD TEQ Mammal	0.000218	9.61E-05	6.44E-05

Table 7-23
Comparison of Clam Concentrations Between the Borrow Pit Lake and both Reference Areas
Sauget Area I

	Site	Site	Reference	Reference
Compound	Maximum	Average	Maximum	Average
Herbicides (ug/kg)		1		
2,4-D	ND	ND	ND	ND
Dicamba	ND	ND	ND	ND
Dichloroprop	32	18	87	35
МСРА	ND	ND	1400	7467
MCPP	4000	5000	ND	ND
Metals (mg/kg)				
Aluminum, Total	13	10.5	26	18.33
Antimony	ND	ND	ND	ND
Arsenic, Total	0.96	1.8	0.65	1.75
Barium, Total	ND	ND	ND	ND
Cadmium, Total	0.12	0.14	0.61	0.43
Chromium, Total	1.1	0.68	2.2	1.50
Copper, Total	0.99	0.86	2.4	2.13
Iron	ND	ND	ND	ND
Lead, Total	0.25	0.23	0.59	0.42
Manganese	ND	ND I	ND	ND
Mercury	ND	ND ND	ND	ND
Molybdenum	ND	ND	ND	ND
Nickel, Total	ND	ND	ND	ND
Silver	0.015	0.035	ND	ND
Zinc, Total	22	15.0	52	36
Total PCBs (ug/kg)	ND	ND	ND	ND
Pesticides (ug/kg)				
4.4'-DDD	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	ND
4,4'-DDT	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND .
Alpha Chlordane	ND	ND	ND	ND
delta-BHC	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND
Endosulfan II	ND	ND	ND	ND
Endosulfan sulfate	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND
Endrin ketone	ND	ND	ND	ND
Gamma Chlordane	ND	ND	ND	ND
gamma-BHC (Lindane)	ND	ND	ND	ND
Heptachlor	2.3	3.55	ND	ND
Heptachlor epoxide	ND	ND	ND	ND
Methoxychlor	5.4	30	ND	ND
SVOC (ug/kg)				
bis(2-ethylhexyl)phthalate	170	99	ND	ND
Di-n-butylphthalate	ND	ND	ND	ND
Diethylphthalate	120	75	ND	ND
Acenaphthylene	ND	ND	ND	ND
Fluoranthene	ND	ND	ND	ND
Benzo(b)fluoranthene	ND	ND	ND	ND
Benzo(k)fluoranthene	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND
Indeno(1,2,3-c-d)pyrene	ND	ND	ND	ND
Dibenz(a,h)anthracene	ND	ND	ND	ND
2,3,7,8-TCDD TEQ Mammal	0.000146	8.3E-05	3.64E-05	2.44E-05
2,3,7,8-TCDD TEQ Bird	0.001303	0.000761	0.00025	0.00017
_,J,,,U . JJD 1EQ DilQ	0.00.000	0.000.01	0.00020	0.00011

Table 7-24

Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks

Sauget Area I

Constituent	Frequency of Detection in Soil	Maximum site concentration	95% UCL	95% UCL Represents Site Concentration	Twice Average Background Soil Concentration	Soil Benchmark ¹	Comment
Dioxins, ug/kg		100					
2,3,7,8-TCDD TEQ (mammals) ²	100%	0.052	0.011	yes	0.124	0.00315	Maximum exceeds benchmark
Herbicides, ug/kg							
2,4-D	2%	9.60	NC	no	ND		Frequency less than 5%
2,4-DB	6%	41.00	6.62	yes	ND		No benchmark; ND in background
Dicamba	23%	23.00	4.90	yes	ND		No benchmark; ND in background
MCPA	20%	7400	1784	yes	14500		No benchmark; within background
MCPP	15%	7700	1859	yes	9967		No benchmark; within background
Metals, mg/kg							
Aluminum	100%	18000	10122	yes	25400	4	No benchmark; within background
Antimony	42%	2.60	1.24	yes	3.80	5	Maximum less than benchmark
Arsenic	100%	34.00	7.88	yes	19.13	9.9	Maximum exceeds benchmark
Barium	100%	1200	198	yes	363	283	Maximum exceeds benchmark
Beryllium	85%	1.10	0.62	yes	1.51	10	Maximum less than benchmark
Cadmium	100%	8.40	2.77	yes	8.65	4	Maximum exceeds benchmark
Calcium	100%	250000	30365	yes	33533	200	Low toxicity
Chromium	100%	49.00	17.93	yes	39		No benchmark; within background
Cobalt	100%	11.00	7.01	yes	16	20	Maximum less than benchmark
Copper	100%	230	80.94	yes	209	60	Maximum exceeds benchmark
Iron	100%	25000	16348	yes	38000	P219	No benchmark; within background
Lead	100%	260	78.92	yes	185	40.5	Maximum exceeds benchmark
Magnesium	100%	21000	6448	yes	17233	10.0	Low toxicity
Manganese	100%	1200	429	yes	883		No benchmark; within background
Mercury	100%	0.57	0.08	yes	0.18		No benchmark; within background
Molybdenum	98%	3.20	0.81	yes	2.02	2	Maximum exceeds benchmark
Nickel	100%	55	20.02	yes	42.67	30	Maximum exceeds benchmark
Potassium	100%	3800	2135	yes	4733	00	Low toxicity
Selenium	25%	3.20	0.66	yes	ND ND	0.21	Maximum exceeds benchmark
Silver	49%	0.60	0.49	yes	1.35	2	Maximum less than benchmark
Thallium	26%	1.40	0.49	ves	ND	1	Maximum exceeds benchmark
Vanadium	100%	120	29.91	yes	69	2	Maximum exceeds benchmark
Zinc	100%	1400	332		808	8.5	Maximum exceeds benchmark
PCBs, ug/kg	100%	1400	332	yes	000	0.5	Waxiiifulli exceeds beliciililaik
Total PCBs	82%	385	90.43	1400	1200	371	Maximum exceeds benchmark
Pesticides, ug/kg	0276	303	90.43	yes	1200	3/1	Maximum exceeds benchmark
4,4'-DDD	8%	36	3.01	1100	ND		No benchmark; ND in background
4,4'-DDE	54%	54		yes			
4,4'-DDT			404	yes	16.12		No benchmark; within background
	48%	140	7.95	yes	14.12	ĺ	No benchmark; within background
Aldrin	2%	23	1.68	yes	ND		Frequency less than 5%
Alpha Chlordane	20%	54	2.55	yes	ND		No benchmark; ND in background
alpha-BHC	2%	0.22	NC	no	ND		Frequency less than 5%
beta-BHC	11%	3.80	0.54	yes	ND		No benchmark; ND in background
delta-BHC	8%	0.24	0.22	yes	ND		No benchmark; ND in background
Dieldrin	29%	120	3.86	yes	ND		No benchmark; ND in background
Endosulfan II	2%	1.00	NC	no	ND		Frequency less than 5%
Endosulfan sulfate	18%	1.90	1.60	yes	ND		No benchmark; ND in background
Endrin	6%	6.10	2.31	yes	ND		No benchmark; ND in background
Endrin aldehyde	5%	5.06	2.16	yes	ND		No benchmark; ND in background
Endrin ketone	37%	4.9450	2.56	ves	ND		No benchmark; ND in background

Table 7-24

Comparison of Floodplain Surface Soil Concentrations to Ecological Benchmarks

Sauget Area I

Constituent	Frequency of Detection in Soil	Maximum site concentration	95% UCL	95% UCL Represents Site Concentration	Twice Average Background Soil Concentration	Soil Benchmark ¹	Comment
Gamma Chlordane	22%	78.00	3.26	yes	ND		No benchmark; ND in background
gamma-BHC (Lindane)	3%	0.1300	NC	no	ND		Frequency less than 5%
Heptachlor	6%	91	1.98	ves	ND		No benchmark; ND in background
Heptachlor epoxide	25%	30	2.04	yes	ND		No benchmark; ND in background
Methoxychlor	37%	38	11.61	yes	ND		No benchmark; ND in background
SVOCs, ug/kg							
2-Methylnaphthalene	5%	72	NC	no	ND		No benchmark; ND in background
Acenaphthene	14%	1200	124	yes	ND	20000	Maximum less than benchmark
Acenaphthylene	6%	75	174	no	ND		No benchmark: ND in background
Anthracene	23%	2300	152	yes	160		No benchmark; within background
Benzo(a)anthracene	57%	4300	266	yes	240		No benchmark; higher than background
Benzo(a)pyrene	40%	3600	226	yes	187		No benchmark; higher than background
Benzo(b)fluoranthene	55%	4400	282	yes	179		No benchmark; higher than background
Benzo(g,h,i)perylene	37%	2200	201	yes	127		No benchmark; higher than background
Benzo(k)fluoranthene	40%	3400	249	ves	208		No benchmark; higher than background
bis(2-Ethylhexyl)phthalate	29%	430	111	yes	322		No benchmark; within background
Butylbenzylphthalate	5%	340	103	yes	ND		No benchmark; ND in background
Carbazole	17%	1000	127	ves	64		No benchmark; higher than background
Chrysene	63%	4900	319	yes	273		No benchmark; higher than background
Dibenzo(a,h)anthracene	18%	810	90	ves	ND		No benchmark; ND in background
Dibenzofuran	8%	770	112	ves	ND		No benchmark; ND in background
Diethylphthalate	2%	39	NC	no	187	100000	Frequency less than 5%
Di-n-butylphthalate	15%	170	100	yes	312	200000	Maximum less than benchmark
Fluoranthene	60%	10000	558	ves	502	200000	No benchmark; higher than background
Fluorene	11%	1400	126	yes	ND		No benchmark; ND in background
Indeno(1,2,3-cd)pyrene	28%	2000	195	yes	ND		No benchmark; ND in background
Naphthalene	3%	79	180	no	ND		Frequency less than 5%
Pentachlorophenol	55%	740	278	yes	742	3000	Maximum less than benchmark
Phenanthrene	52%	9200	366	yes	335		No benchmark; higher than background
Pyrene	49%	8500	443	yes	435		No benchmark; higher than background
VOCs, ug/kg				700			The second of th
2-Butanone (MEK)	35%	47.00	20.85	yes	ND		No benchmark; ND in background
2-Hexanone	5%	6.90	8.01	no	33.00		No benchmark; within background
Acetone	49%	670	283	yes	ND		No benchmark; ND in background
Benzene	8%	4.80	2.97	yes	ND		No benchmark; ND in background
Carbon disulfide	5%	4.30	2.98	yes	ND		No benchmark; ND in background
Chlorobenzene	2%	4.00	2.95	yes	ND	40000	Frequency less than 5%
Ethylbenzene	2%	3.00	2.78	yes	ND		Frequency less than 5%
Methylene chloride (Dichloromethane)	5%	2.40	2.36	yes	11.4	1	No benchmark; within background
Toluene	20%	12.0	3.34	yes	ND	200000	Maximum less than benchmark
Trichloroethene	6%	6.20	3.07	yes	ND	20000	No benchmark; ND in background
Xylenes, Total	2%	4.20	2.99	yes	ND		Frequency less than 5%

¹Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints

Yellow shading indicates maximum site concentration exceeds benchmark.

Green shading indicates upper 95% UCL concentration (or maximum if 95% UCL not available) exceeds twice average background concentration (or constituent was not detected in background soil).

²Calculated according to 1998 World Health Organization guidelines for mammals; Estimated Maximum Potential Concentration treated as non-detects.

Table 7-25
Surface Soil Locations that Exceed Ecological Benchmarks
Sauget Area I

Constituent	Sample ID	Concentration	ER Q
Arsenic, mg/kg	Benchmark ¹	9.9	
	Background ²	19]
	DAS-T4-S2-0-0.5FT	10]
	UAS-T1-S1-0-0.5FT	10	
	UAS-T2-S3-0-0.5FT	10	
	UAS-T7-S1-0-0.5FT	34	
Barlum, mg/kg	Benchmark ¹	283	
	Background ²	360	
	UAS-T4-S2-0-0.5FT	1200	
Cadmium, mg/kg	Benchmark ¹	4	
	Background ²	8.6	
	DAS-T5-S3-0-0.5FT	5.7	
	DAS-T6-S1-0-0.5FT	4	
	UAS-T1-S1-0-0.5FT	4.8	}
	UAS-T5-S6-0-0.5FT	8.4] .
	UAS-T7-S1-0-0.5FT	5.4	
·	UAS-T7-S7-0-0.5FT_	6.1	
Copper, mg/kg	Benchmark ¹	60	
	Background ²	190	
	DAS-T1-S1-0-0.5FT	98	J.
	DAS-T1-S2-0-0.5FT	85	J
	DAS-T1-S3-0-0.5FT	73	J
	DAS-T2-S1-0-0.5FT	110	J
	DAS-T2-S3-0-0.5FT	94 70	J
	DAS-T3-S1-0-0.5FT	70	[
	DAS-T3-S2-0-0.5FT DAS-T3-S3-0-0.5FT	63	}
	DAS-T4-S2-0-0.5FT	79	·
	DAS-T4-S3-0-0.5FT	64	1
	DAS-T5-S1-0-0.5FT	75	[
	DAS-T5-S3-0-0.5FT	70	<u> </u>
	UAS-T1-S1-0-0.5FT	150	
	UAS-T1-S2-0-0.5FT	230	
	UAS-T1-S3-0-0.5FT	230	l '
	UAS-T1-S4-0-0.5FT	160	1
	UAS-T1-S5-0-0.5FT	130	
	UAS-T1-S6-0-0.5FT	86	1
	UAS-T1-S7-0-0.5FT	77	
	UAS-T2-S1-0-0.5FT	140	Į.
	UAS-T2-S2-0-0.5FT	77	1
	UAS-T2-S3-0-0.5FT	87	. .
	UAS-T2-S4-0-0.5FT	95	
	UAS-T2-S5-0-0.5FT	69	
	UAS-T2-S6-0-0.5FT	87	İ
	UAS-T3-S2-0-0.5F1	65	1.
	UAS-T3-S3-0-0.5FT	52	J
	UAS-T3-S4-0-0.5FT	77 79	1
	UAS-T3-S5-0-0.5FT UAS-T3-S7-0-0.5FT	79	1
	UAS-T4-S1-0-0.5FT	69	
	UAS-T4-S2-0-0.5FT	180	ĺ
	UAS-T4-S7-0-0.5FT	60	1
	UAS-T5-S6-0-0.5FT	85	1
	[0/-0-10-0-0-0-0]	, 55	1

Table 7-25
Surface Soil Locations that Exceed Ecological Benchmarks
Sauget Area I

Constituent	Sample ID	Concentration	ER Q
Lead, mg/kg	Benchmark ¹	40.5	
	Background ²	180	
	DAS-T1-S1-0-0.5FT	96	J
	DAS-T1-S2-0-0.5FT	50	J
	DAS-T1-S3-0-0.5FT	50	J
	DAS-T2-S1-0-0.5FT	88	J
	DAS-T2-S3-0-0.5FT DAS-T3-S1-0-0.5FT	76 53	J
	DAS-T3-S2-0-0.5FT	90	J
	DAS-T3-S3-0-0.5FT	53	Ĵ
	DAS-T4-S1-0-0.5FT	75	J
	DAS-T4-S2-0-0.5FT	96	J
	DAS-T4-S3-0-0.5FT	50	J
	DAS-T5-S1-0-0.5FT	130	J
	DAS-T5-S3-0-0.5FT	130	Ŋ
	DAS-T6-S1-0-0.5FT	110	Į.
	DAS-T6-S3-0-0.5FT DAS-T7-S2-0-0.5FT	87 67	J
	UAS-T1-S1-0-0.5FT	93	١
	UAS-T1-S2-0-0.5FT	92	ľ
	UAS-T1-S3-0-0.5FT	120	
	UAS-T1-S4-0-0.5FT	73	
	UAS-T1-S5-0-0.5FT	69]
	UAS-T1-S7-0-0.5FT	46	
	UAS-T2-S1-0-0.5FT	. 79	
	UAS-T2-S2-0-0.5FT	50 66	ŀ
	UAS-T2-S3-0-0.5FT UAS-T2-S4-0-0.5FT	66 72	
	UAS-T2-S5-0-0.5FT	48	1
	UAS-T2-S6-0-0.5FT	79	
	UAS-T3-S2-0-0.5FT	63	
	UAS-T3-S4-0-0.5FT	64	
	UAS-T3-S5-0-0.5FT	56	
	UAS-T3-S7-0-0.5FT	51	J
	UAS-T4-S1-0-0.5FT	62	ŀ
	UAS-T4-S2-0-0.5FT	190	
	UAS-T4-S5-0-0.5FT UAS-T4-S6-0-0.5FT	83 130	
	UAS-T4-S7-0-0.5FT	260	1
	UAS-T5-S1-0-0.5FT	59	1
	UAS-T5-S2-0-0.5FT	50	
	UAS-T5-S3-0-0.5FT	54	
	UAS-T5-S4-0-0.5FT	50	
	UAS-T5-S5-0-0.5FT	45	
	UAS-T5-S6-0-0.5FT	170	١.
	UAS-T6-S5-0-0.5FT	78 74	J
	UAS-T7-S1-0-0.5FT UAS-T7-S2-0-0.5FT	71 41) J
	UAS-T7-S3-0-0.5FT	64	J
	UAS-T7-S5-0-0.5FT	42	Ĵ
	UAS-T7-S6-0-0.5FT	72	Ĵ
	UAS-T7-S7-0-0.5FT	150	J
Molybdenum, mg/kg	Benchmark ¹	2	
	Background ²	2	
	UAS-T4-S5-0-0.5FT	2.3	ĺ
	UAS-T6-S5-0-0.5FT	3.2	
lickel, mg/kg	Benchmark ¹	30	
	Background ²	.43	1
	UAS-T7-S1-0-0.5FT	55	

Table 7-25
Surface Soil Locations that Exceed Ecological Benchmarks
Sauget Area I

Constituent	Sample ID	Concentration	ER Q
Selenium, mg/kg	Benchmark ¹	0.21	
	Background ²	ND	i
	DAS-T2-S3-0-0.5FT	0.55	J
	DAS-T4-S2-0-0.5FT	0.88	J j
	UAS-T1-S1-0-0.5FT	0.81	J I
	UAS-T1-S5-0-0.5FT	0.72	J
	UAS-T2-S4-0-0.5FT	0.61	J
	UAS-T2-S6-0-0.5FT	1	J I
	UAS-T3-S5-0-0.5FT	0.6	J
	UAS-T3-S7-0-0.5FT	3.2	
	UAS-T5-S4-0-0.5FT	0.48	J I
	UAS-T6-S5-0-0.5FT	0.68	J
	UAS-T7-S1-0-0.5FT	31.1	
	UAS-T7-S2-0-0.5FT	0.49	J
	UAS-T7-S3-0-0.5FT	0,89 0.55	[J
	UAS-T7-S4-0-0.5FT	0.55	J l
	UAS-T7-S6-0-0.5FT	1.1]
	UAS-T7-S7-0-0.5FT	0.53	J
Thallium, mg/kg	Benchmark ¹	1	
	Background ²	ND	1
	DAS-T2-S2-0-0.5FT	1.3	[]
	DAS-T3-S2-0-0.5FT	1.4	1 1
	DAS-T4-S2-0-0.5FT	1.1	J
	DAS-T4-S3-0-0.5FT	11	J I

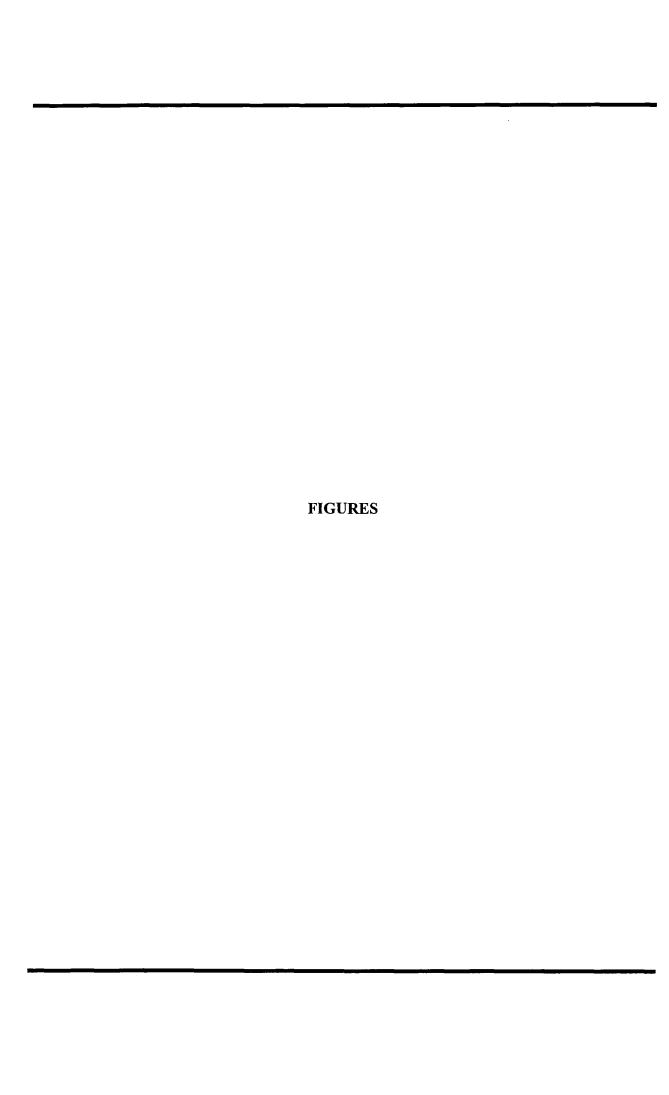
Table 7-25
Surface Soll Locations that Exceed Ecological Benchmarks
Sauget Area t

Constituent	Sample ID	Concentration	ER
/anadium, mg/kg	Benchmark ¹	2	
	Background ²	69	ļ
	DAS-T1-S1-0-0.5FT	19	1
	DAS-T1-S2-0-0.5FT	25	
	DAS-T1-S3-0-0.5FT	18	1
	DAS-T2-S1-0-0.5FT	24	1
	DAS-T2-S2-0-0.5FT	120	ĺ.
	DAS-T2-S3-0-0.5FT	34	1
	DAS-T3-S1-0-0.5FT	23	
	DAS-T3-S2-0-0.5FT	25	
	DAS-T3-S3-0-0.5FT	20	
	DAS-T4-S1-0-0.5FT	21	
	DAS-T4-S2-0-0.5FT	35	
	DAS-T4-S3-0-0.5FT	34	J
	DAS-T5-S1-0-0.5FT	19	ļ
	DAS-T5-S2-0-0.5FT	19	
	DAS-T5-S3-0-0.5FT	17	
	DAS-T6-S1-0-0.5FT	22	J
	DAS-T6-S2-0-0.5FT	22	J
	DAS-T6-S3-0-0.5FT	17	j .
	DAS-T7-S1-0-0.5FT	25	ŀ
	DAS-T7-S2-0-0.5FT	22	
	UAS-T1-S1-0-0.5FT	32	ŀ
	UAS-T1-S2-0-0.5FT	35	
	UAS-T1-S3-0-0.5FT	41	
	UAS-T1-S4-0-0.5FT	36 35	
	UAS-T1-S5-0-0.5FT	35 33	ŀ
	UAS-T1-S6-0-0.5FT	22 21	
	UAS-T2-S1-0-0.5FT	30	
	UAS-T2-S2-0-0.5FT	28	
	UAS-T2-S3-0-0.5FT	40	J
	UAS-T2-S4-0-0.5FT	46	٦
	UAS-T2-S5-0-0.5FT	30	J
	UAS-T2-S6-0-0.5FT	28	ŭ
	UAS-T3-S1-0-0.5FT	30	Ĭ
	UAS-T3-S2-0-0.5FT	39	J
	UAS-T3-S3-0-0.5FT	26	Ĵ
	UAS-T3-S4-0-0.5FT	42	Ĵ
	UAS-T3-S5-0-0.5FT	27	Ĵ
	UAS-T3-S6-0-0.5FT	23	Ĵ
	UAS-T3-S7-0-0.5FT	13	
	UAS-T4-S1-0-0.5FT	23	İ
	UAS-T4-S2-0-0.5FT	22	
	UAS-T4-S3-0-0.5FT	27	i
	UAS-T4-S4-0-0.5FT	15	l
	UAS-T4-S5-0-0.5FT	26	İ
	UAS-T4-S6-0-0.5FT	29	i
	UAS-T4-S7-0-0.5FT	26	i
	UAS-T5-S1-0-0.5FT	29	ĺ
	UAS-T5-S2-0-0.5FT	29	i
	UAS-T5-S3-0-0.5FT	25	ĺ
	UAS-T5-S4-0-0.5FT	26	i
	UAS-T5-S5-0-0.5FT	28	i
	UAS-T5-S6-0-0.5FT	27	l
	UAS-T6-S1-0-0.5FT	25	İ
	UAS-T6-S2-0-0.5FT	24	ĺ
	UAS-T6-S3-0-0 5FT	30	
	UAS-T6-S4-0-0.5FT	33	ļ
	UAS-T6-S5-0-0.5FT	30	1
	UAS-T7-S1-0-0.5FT	27	ļ
	UAS-T7-S2-0-0.5FT	25	ļ
	UAS-T7-S3-0-0.5FT	33	1
	HINCH / CAN BEET	22	4
	UAS-T7-S4-0-0.5FT		
	UAS-T7-S5-0-0.5FT UAS-T7-S6-0-0.5FT	26 22	ļ ·

Table 7-25 Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I

Constituent	Sample ID	Concentration	ER Q
Zinc, mg/kg	Benchmark ¹	8.5	
	Background ²	810	
	DAS-T1-S1-0-0.5FT	300	J
!	DAS-T1-S2-0-0.5FT	230	J.
	DAS-T1-S3-0-0.5FT	250	J
	DAS-T2-S1-0-0.5FT	290	J
	DAS-T2-S2-0-0.5FT	140	J
	DAS-T2-S3-0-0.5FT	260 220	7
	DAS-T3-S1-0-0.5FT DAS-T3-S2-0-0.5FT	240	J
	DAS-T3-S3-0-0.5FT	260	J
	DAS-T4-S1-0-0.5FT	240	Ĵ
	DAS-T4-S2-0-0.5FT	310	
	DAS-T4-S3-0-0.5FT	180	
	DAS-T5-S1-0-0.5FT	330	J
	DAS-T5-S2-0-0.5FT	140	J
	DAS-T5-S3-0-0.5FT	750	J
	DAS-T6-S1-0-0.5FT DAS-T6-S2-0-0.5FT	350 110	
	DAS-16-S2-0-0.5FT	240	1
	DAS-T7-S1-0-0.5FT	870	1
	DAS-T7-S2-0-0.5FT	260	
	UAS-T1-S1-0-0.5FT	1400	J
	UAS-T1-S2-0-0.5FT	340	J
	UAS-T1-S3-0-0.5FT	390	J
	UAS-T1-S4-0-0.5FT	280	J
	UAS-T1-S5-0-0.5FT	270	J
	UAS-T1-S6-0-0.5FT	180 250	j
	UAS-T1-S7-0-0.5FT UAS-T2-S1-0-0.5FT	310	7
	UAS-T2-S2-0-0.5FT	190	J
	UAS-T2-S3-0-0.5FT	250	Ĵ
	UAS-T2-S4-0-0.5FT	270	J
	UAS-T2-S5-0-0.5FT	210	J
	UAS-T2-S6-0-0.5FT	290	ı
	UAS-T3-S1-0-0 5FT	160	
	UAS-T3-S2-0-0.5FT	240	
	UAS-T3-S3-0-0.5FT	160	J
	UAS-T3-S4-0-0.5FT UAS-T3-S5-0-0.5FT	300 410	
	UAS-T3-S6-0-0.5FT	250	1
	UAS-T3-S7-0-0.5FT	460	
	UAS-T4-S1-0-0.5FT	240	
	UAS-T4-S2-0-0.5FT	290	
	UAS-T4-S3-0-0.5FT	76	
	UAS-T4-S4-0-0.5FT	82	
	UAS-T4-S5-0-0.5FT	120	
ı	UAS-T4-S6-0-0.5FT	140 550	
	UAS-T5-S1-0-0.5FT	230	
	UAS-T5-S2-0-0.5FT	230	
	UAS-T5-S3-0-0.5FT	240]]
	UAS-T5-S4-0-0.5FT	230	
	UAS-T5-S5-0-0.5FT	240	
	UAS-T5-S6-0-0.5FT	980	
1	UAS-T6-S1-0-0.5FT	160	J
	UAS-T6-S2-0-0.5FT	82 90	J
	UAS-T6-S3-0-0.5FT UAS-T6-S4-0-0.5FT	99	7
	UAS-T6-S5-0-0.5FT	120	J
	UAS-T7-S1-0-0.5FT	610	ا
	UAS-T7-S2-0-0.5FT	190	
	UAS-T7-S3-0-0.5FT	270	
!	UAS-T7-S4-0-0.5FT	150	[
	UAS-T7-S5-0-0.5FT	160	
	UAS-T7-S6-0-0.5FT UAS-T7-S7-0-0.5FT	310 640	ļ

Table 7-25 Surface Soil Locations that Exceed Ecological Benchmarks Sauget Area I


Benchmark ¹ Background ² UAS-T6-S2-0-0.5FT Benchmark ¹	371 1200 385	
UAS-T6-S2-0-0.5FT Benchmark ¹)
UAS-T6-S2-0-0.5FT Benchmark ¹	_385	í
		L
1_ 2	0.00315	
Background ²	0.124	
DAS-T1-S1-0-0.5FT	0.0235855	}
DAS-T1-S2-0-0.5FT	0.016399	
DAS-T1-S3-0-0.5FT	0.014051	1
DAS-T2-S1-0-0.5FT	0.02144	1
DAS-T2-S2-0-0.5FT	0.012195	1
DAS-T2-S3-0-0.5FT	0.017101	1
DAS-T3-S1-0-0.5FT	0.007658	1
DAS-T3-S2-0-0.5FT	0.008586	
DAS-T3-S3-0-0.5FT	0.00766	
DAS-T4-S1-0-0.5FT	0.016645]
DAS-T4-S2-0-0.5FT	0.006258	
DAS-T4-S3-0-0.5FT	0.006696	1
DAS-T5-S1-0-0.5FT	0.005006	1
DAS-T5-S2-0-0.5FT	0.005483	İ
DAS-T5-S3-0-0.5FT	0.02432]
DAS-T6-S1-0-0.5FT	0.009106	
DAS-T6-S2-0-0.5FT	0.004063	
DAS-T6-S3-0-0.5FT	0.006762	
DAS-T7-S1-0-0.5FT	0.0034335)
DAS-T7-S2-0-0.5FT	0.008225	
UAS-T1-S1-0-0.5FT	0.01856	
UAS-T1-S6-0-0.5FT	0.015206	1
UAS-T2-S4-0-0.5FT	0.01974	1
UAS-T3-S3-0-0.5FT	0.005056	
UAS-T4-S1-0-0.5FT	0.008645	}
UAS-T4-S6-0-0.5FT	0.187423	
UAS-T5-S4-0-0.5FT	0.00562	
UAS-T6-S3-0-0.5FT	0.01658	
UAS-T7-S3-0-0.5FT	0.0087385	
	DAS-T1-S1-0-0.5FT DAS-T1-S2-0-0.5FT DAS-T1-S3-0-0.5FT DAS-T2-S1-0-0.5FT DAS-T2-S2-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T4-S1-0-0.5FT DAS-T5-S1-0-0.5FT DAS-T5-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT UAS-T1-S1-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T3-S3-0-0.5FT	DAS-T1-S1-0-0.5FT DAS-T1-S2-0-0.5FT DAS-T1-S2-0-0.5FT DAS-T1-S3-0-0.5FT DAS-T2-S1-0-0.5FT DAS-T2-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T3-S3-0-0.5FT DAS-T4-S1-0-0.5FT DAS-T4-S1-0-0.5FT DAS-T5-S3-0-0.5FT DAS-T5-S3-0-0.5FT DAS-T5-S3-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T6-S1-0-0.5FT DAS-T7-S1-0-0.5FT DAS-T7-S1-0-0.5FT UAS-T1-S6-0-0.5FT UAS-T3-S3-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T4-S1-0-0.5FT UAS-T5-S4-0-0.5FT UAS-T6-S3-0-0.5FT

¹Efroymson et al., 1997. Preliminary Remediation Goals for Ecological Endpoints.

²Background concentration is twice average concentration for three background soil samples.
Shading indicates concentrations exceeds benchmark and background.

Tabre 8-1 Weight of Evidence Evaluation of Ecological Risk Sauget Area I

		Harm/Magnitude		Yes/High	Yee/Low	Undetermined	No Rink					
As	Sustain	(Inc	Low Weight		Ic - COPCs exceed sediment gardelines for benthic invertebrates							
Assessment Endpoint 1	Sustainability of warm water fish	Weighing Factors (Increasing Confidence or Weight)	Medium Weight	<i>†</i>	1a - fish body burdens indicate highe exposure to some COPCS than reference areas, mercury concentrations in some fish exceed toxic benchmark		Ic-benthic community is impaired to same degre as reference area Ic-sediments exhibit toxicity to similar degree as reference areas reference areas					
fish	ter fish	(high)	(min)	ler Jish Aght)	tter fish S reight)	High Weight				1b - COPCs that exceed surface water criteria are at background levels		
	Survival, grox		Low Weight		2d - food chain modeling indicated potential risk to great blue herent that eats fish due to mercury		2a species use of habitat appears similar to reference areas 2b, 2e - food chain modeling indicated no nisk to mellarate start eat plants, risks to mellarate start eating plants and clams due to altuminum is similar to reference areas 2d, 2e - food chain modeling indicated no nisk to niver ofter that eating that on the case areas in the content that eating the c					
Assessment Endpoint 2	Survival, growth, and reproduction of aquatic wildlife species	Weighing Factors (Increasing Confidence or Weight)	Medium Weight		2b, 2d, 2e - concentrations in plants, Sike, claus, and strimp indicate higher exposure than reference areas		2c - surface water concentrations do not present a risk to wildlife					
ic wildlife species	ttic wildlife species	1	Survival, gr	High Weight								
A	Survival, grown			Low Weight				3a - food chain modeling indicated no risk to bald eagles esting fish from Borrow				
Assessment Endpoint 3	essment Endpoint 3 and reproduction of bald			Medium Weight		3a - concentrations in fish indicate higher exposure than reference areas						
	ild eagles	1	1	High Weight								
	Survival, growth,		Low Weight		4a - CONCENTRATORS OF COPCS in Surface soil exceed some screening benchmarks							
Assessment Endpoint 4 Survival, growth, and reproduction of terrestrial wildlife in floodplain	h, and reproduction of terrestria floodplain	Weighing Factors Increasing Confidence or Weight)	Weighing Factors (Increasing Confidence or Weight)	Hoodplain Weighing Factors increasing Confidence or Weight) Medium Weight	Weighing Factors (Increasing Confidence or Weight)	Weighing Factors Increasing Confidence or Weight)	Weighing Factors (Increasing Confidence or Weight)	Medium Weight				
	al wildlife in	1	High Weight									



Figure 1-1: Site Locus and Sample Locations
Sauget Area 1
Sauget, Illinois

Figure 2-1: Monroe County Reference Areas Sauget Area 1 Sauget, Illinois

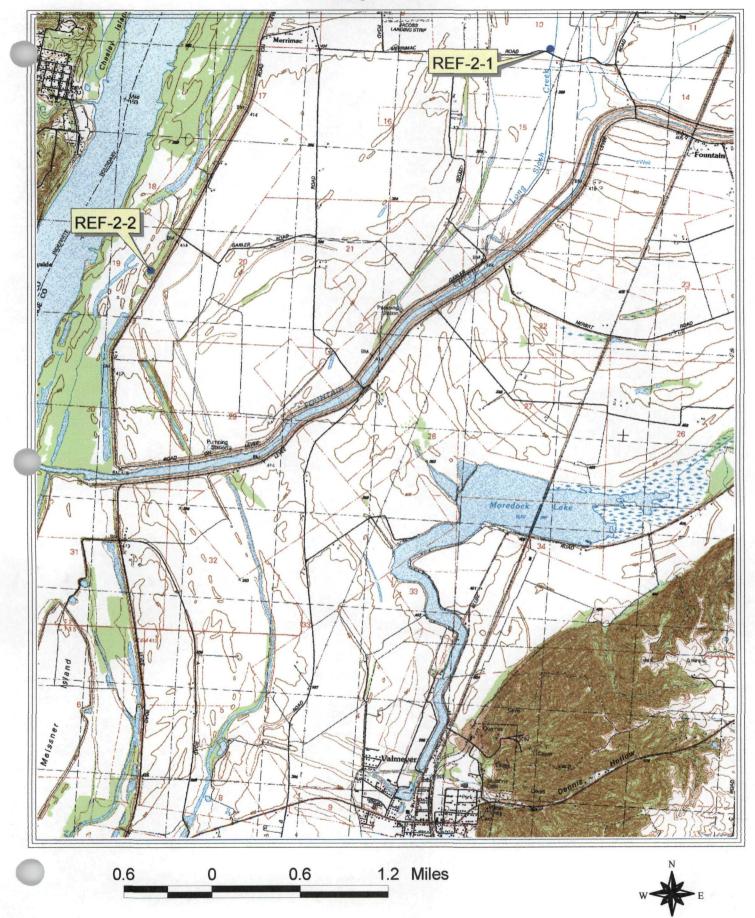
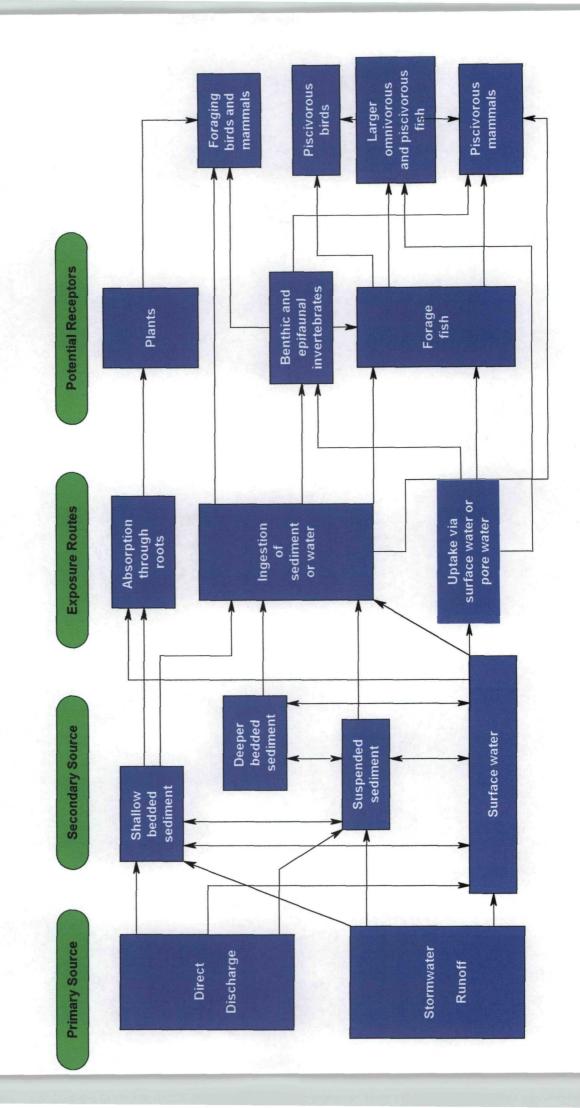
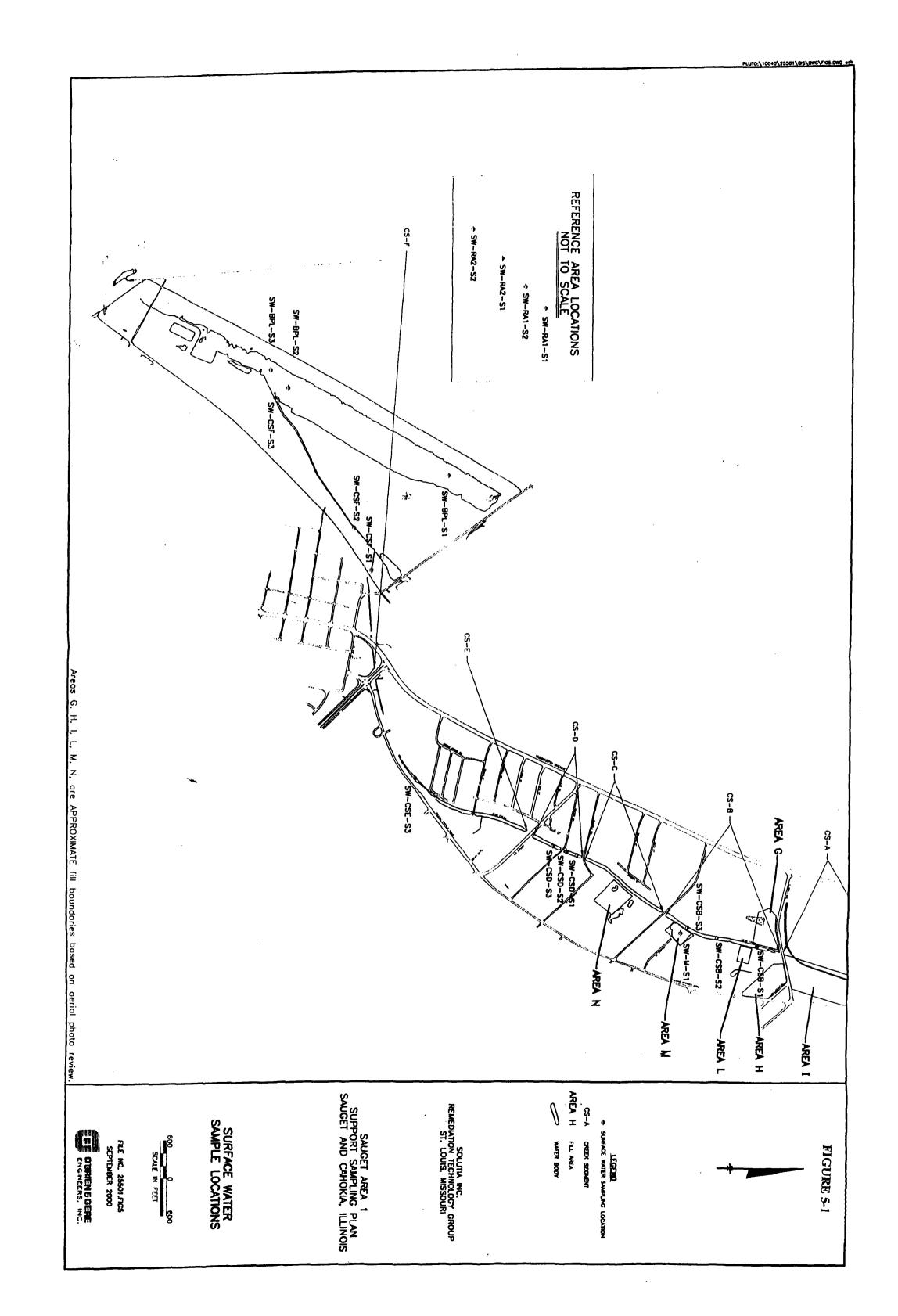
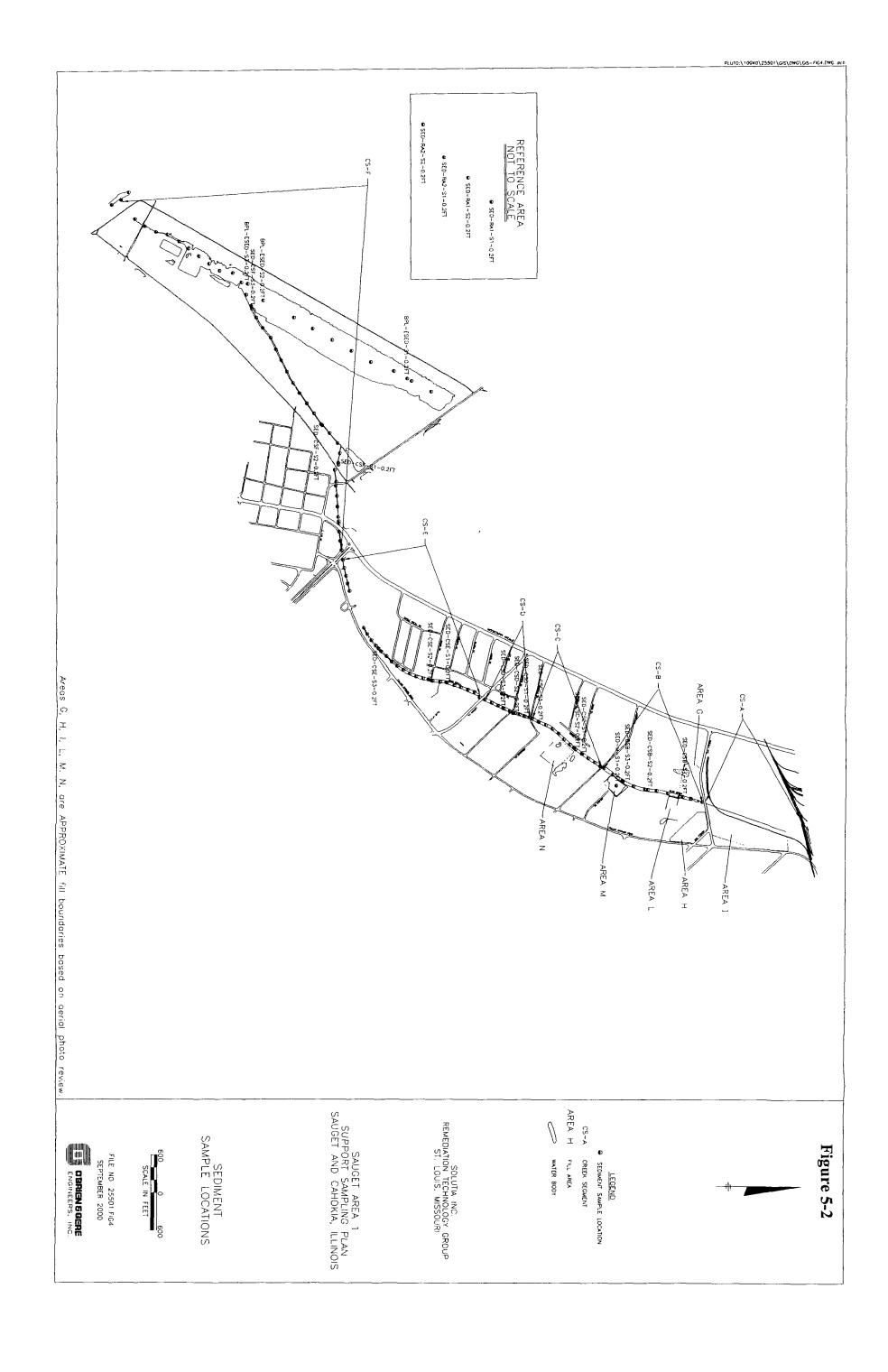





Figure 3-1: Ecological Conceptual Model for Dead Creek

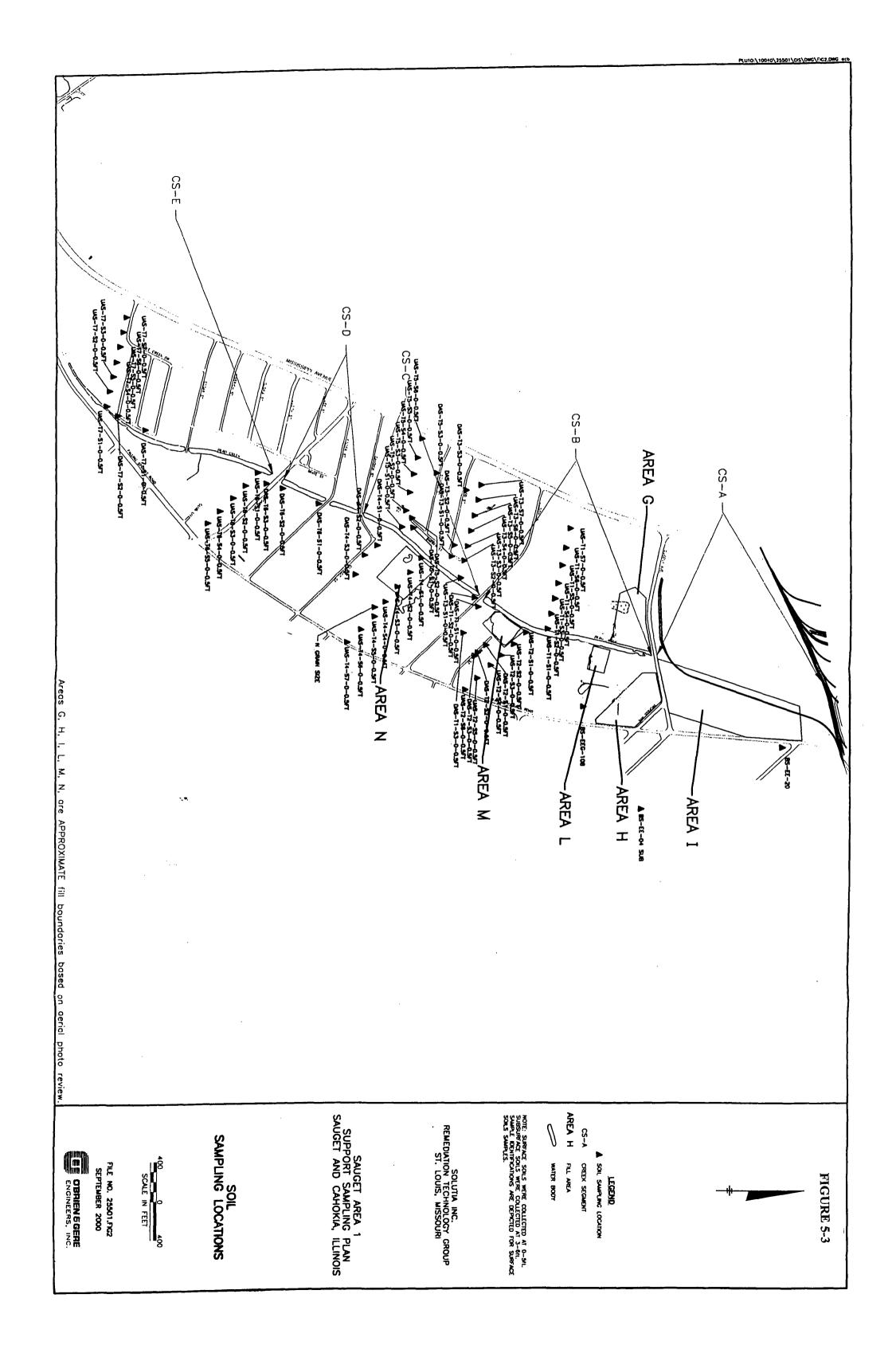
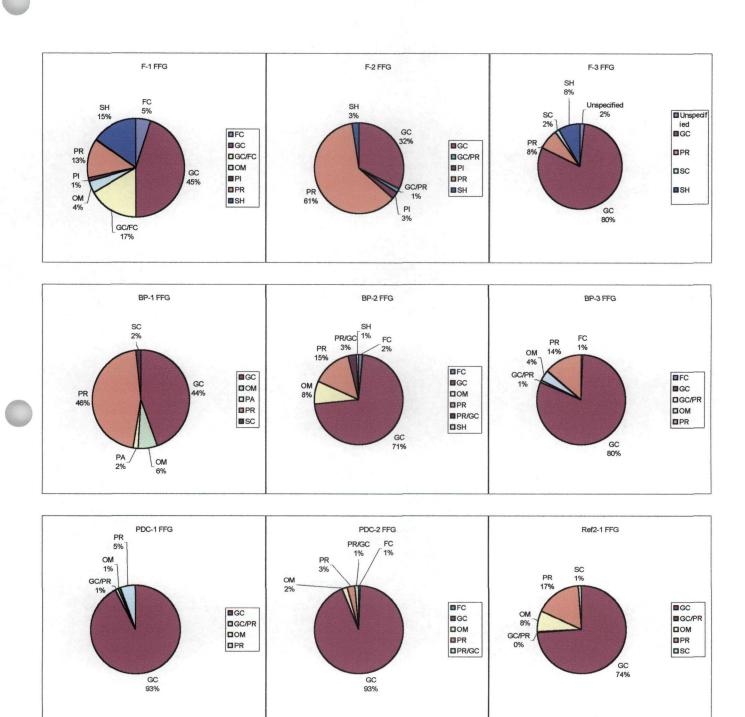



Figure 7-1 Summary of Functional Feeding Group (FFG) Abundance Dead Creek Section F, Borrow Pit Lake, and Reference Areas Sauget Area I

FC: Filter/collector GC: Gatherer/collector

OM: Omnivore

PA: Parasite

PI: Piercer PR: Predator

SC: Scraper SH: Shredder

APPENDIX A ECOLOGICAL RISK ASSESSMENT WORK PLAN FOR SAUGET AREA I

ECOLOGICAL RISK ASSESSMENT WORK PLAN FOR SAUGET AREA I

SAUGET, ST. CLAIR COUNTY, ILLINOIS

August 11, 1999

Prepared for:

Solutia, Inc. 10300 Olive Boulevard St. Louis, Missouri 63166-6760

Prepared by:

Menzie-Cura & Associates, Inc. One Courthouse Lane, Suite Two Chelmsford, Massachusetts 01824 Phone: (978) 453-4300

TABLE OF CONTENTS:

1.0 INTRODUCTION	1
1.1 GOALS AND OBJECTIVES	1
2.0 SITE CONCEPTUAL MODEL	3
2.1 ECOLOGICAL OBSERVATIONS 2.2 SITE CONCEPTUAL MODEL	3
2.2 SITE CONCEPTUAL MODEL	6
3.0 SELECTION OF CHEMICALS OF ECOLOGICAL CONCERN (COECS)	10
4.0 IDENTIFICATION OF RECEPTORS, ASSESSMENT ENDPOINTS, AND MEASURES OF EFFECT	
4.1 RECEPTORS	
4.2 Assessment Endpoints	16
4.3 SELECTION OF MEASURES OF EFFECTS	
4.3.1 Measures of Effects for Assessment Endpoint 1, Sustainability of Warm Water Fish	
4.3.2 Measures of Effects Associated with Assessment Endpoint 2	
4.3.3 Measures of effects Associated with Assessment Endpoint 3	
4.4 STRUCTURE OF WILDLIFE EXPOSURE MODELS	
5.0 RISK CHARACTERIZATION	27
5.1 Use of Hazard Quotients	27
5.2 TOXICITY REFERENCE VALUES FOR WILDLIFE	27
6.0 DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS	30
7.0 REFERENCES	31

1.0 INTRODUCTION

1.1 Goals and Objectives

This document is a workplan for a baseline ecological risk assessment at the Sauget Area I in Sauget, Illinois. The plan addresses Dead Creek Segments B, M, C, D, E, and F, and recent USEPA comments regarding the development of a baseline ecological risk assessment for this area (USEPA, 1999). It is also contingent upon a planned field reconnaissance of the subject areas. In particular, this planned reconnaissance will help to finalize sampling locations, receptors, and the location of a reference area. Observations made during the reconnaissance may necessitate alterations in the workplan. We will communicate such proposed alterations in a technical amendment to the plan, should they occur.

The plan follows current United States Environmental Protection Agency (USEPA) guidance in:

Ecological Risk Assessment Guidance For Superfund: Process For Designing and Conducting Ecological Risk Assessments (USEPA, 1997a); and

Guidelines for Ecological Risk Assessment (EPA/630/R-95/002F, April, 1998).

The USEPA 1997 guidance document provides an eight-step process. Steps 1 and 2 of this process are a screening level assessment, and Steps 3 through 7 provide guidance for a baseline assessment. The screening level assessment may conclude that site data indicate either:

a negligible ecological risk and therefore the site requires no further study; or, there is (or might be) a risk of adverse ecological effects, and the ecological risk assessment process will continue.

Previously, the USEPA conducted a Preliminary Ecological Assessment of Dead Creek Segment F, which essentially provides the screening analyses required in Steps 1 and 2 of the guidance (USEPA, 1997b). This USEPA assessment concluded that the site warrants further investigation. Therefore this Work Plan addresses the various elements of Steps 3 through 7 of USEPA guidance for designing a baseline ecological risk assessment to Segment F, as well as Segments B, C, D, E even though they have not been subject to a prior screening level assessment. The workplan includes:

- Description of a Site Conceptual Model;
- Selection of Chemicals of Ecological Concern;
- Identification of Assessment Endpoints;
- Selection of Receptors;
- Selection of Measures of effects and their relation to assessment endpoints;
- Risk Characterization;
- Discussion of Uncertainties and Assumptions.

The workplan will explain how the baseline risk assessment will use data described in the Quality Assurance Project Plan/Field-Sampling Plan (QAPP/FSP), that has been prepared and

submitted separately. The FSP for the baseline ecological risk assessment describes the details of the field sampling effort as well as the data analysis methods and data quality objectives (DQOs). These include methods for:

conducting a field reconnaissance;

collecting vegetation and benthic organisms in Creek Sectors B to F, M, and the reference areas, and analyzing them for target analytes;

collecting forage fish, predator fish, bottom fish and crayfish in Creek Sector F and the reference areas, and analyzing them for target analytes (we will also collect these organisms in segments B,C,D,E, and, M if observed in those areas);

collecting sediments in Creek Sectors B to F, M, and the reference areas for sediment toxicity testing;

collecting sediments in Creek Sectors B to F, M, and the reference areas for benthic community analysis.

Please refer to the QAPP/FSP for details of field sampling, number of stations, and station locations, and analytical methods.

2.0 SITE CONCEPTUAL MODEL

2.1 Ecological Observations

We will conduct a reconnaissance survey to provide more details and more current information regarding ecological conditions at the various creek sectors. This section provides a description of the site as observed on 29-30 July 1996, when Menzie-Cura & Associates, Inc. personnel (David Peterson, Certified Wildlife Biologist), visited the Sauget Area 1 in Sauget and Cahokia, Illinois and conducted an evaluation of local habitats. The areas observed at that time included ecological resources along: Dead Creek, Prairie du Pont Creek, the associated wetlands, Cahokia Chute, and the Mississippi River. In addition, we contacted federal/state agencies and private conservation organizations concerning additional ecological information available about the area (see Attached List).

Potentially sensitive environments in the Dead Creek area include: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened (T/E) Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands.

Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species

According to the records of the Illinois Department of Natural Resources' Natural Heritage Inventory, the only federally endangered or threatened species in the study area is the federally threatened bald eagle (Haliaeetus leucocephalus). In 1993, a pair of eagles unsuccessfully attempted to nest at the southern tip of Arsenal Island, where the ditched portion of Prairie du Pont Creek enters the Mississippi River. The pair apparently was scared off the site. The next year the pair returned to the island, but no monitoring was conducted to determine if they successfully nested. During the late July 1996 survey we did not observe any eagles in the study area. Remains of a large stick nest were observed at the southern tip of Arsenal Island, but it did not appear to have been used during 1996. We will also check the State of Missouri files for State Designated Endangered or Threatened Species.

Portions of the area suitable for eagle foraging include waterbodies large enough to support large fish such as carp and catfish. The Mississippi River, the channelized section of Prairie du Pont Creek, and a borrow pond at the lower end of Dead Creek all appear to support large fish and provide enough open water for eagles to fish. No foraging eagles were observed during the site visit, nor have local people in the area seen eagles in the vicinity.

Habitat Known to be Used by State Designated Endangered or Threatened Species

The Illinois Natural Heritage Inventory did not have any records of state-listed endangered or threatened species in the study area. However a number of state-listed wading birds were observed throughout the wetlands and waterways. Illinois endangered species observed were

little blue heron (Egretta caerulea), snowy egret (Egretta thula)¹, and black-crowned night heron (Nycticorax nycticorax). Great egret (Casmerodius albus), an Illinois threatened species, was also observed. Small numbers (one to ten individuals) of these wading birds were found foraging along sections of Dead Creek, the ditched length of Prairie du Pont Creek, Cahokia Chute, and the Mississippi River. The largest concentrations of foraging herons (approximately ten individuals at a location) were observed at the confluence of Dead Creek and the ditched Prairie du Pont Creek, and where the ditched Prairie du Pont flows into the Mississippi. These areas likely support the best concentrated fishing areas for wildlife along the waterways.

No wading bird colonies were located within the study area. However, the Illinois Natural Heritage Inventory has documented two 1000-2000 nest mixed-species colonies in East St. Louis. The closest of these two colonies is approximately one mile east of the Monsanto plant near the Alton & Southern rail yards in Alorton. The second site is over two miles to the north at Audubon Avenue and 26th Street. These two colonies contain the only breeding little blue heron and snowy egret in Illinois. In addition, black-crowned night heron, great egret, cattle egret (*Bubulcus ibis*), great blue heron (*Ardea herodias*), and green-backed heron (*Butorides virescens*) nest in the colonies.

In 1988, because the region is heavily industrialized with numerous Superfund sites, the U.S. Fish & Wildlife Service (USFWS) collected black-crowned night heron and little blue heron eggs from the Alorton colony for contaminant analysis (Young, 1989 - unpublished draft). Sediment samples were also taken in areas of observed wading bird foraging around the East St. Louis region. No testing was done of sediments in the Dead Creek drainage. PCB's, DDE, and metals were detected at varying levels from the wading bird eggs.

The observed endangered and threatened wading birds forage on a wide range of aquatic organisms, such as fish, frogs, and crayfish, as well as some terrestrial species such as reptiles and insects. The USFWS study found that wading birds forage over a wide area around East St. Louis. The Dead Creek/Prairie du Pont wetlands system composes a relatively small percentage of the available wetland foraging area in the region.

Wetlands

Wetlands in the study area consist of riparian woods, shrub swamp, marsh, and wet meadow located adjacent to the area's waterways. Drainage from much of the industrial area at the head of Dead Creek is routed away from the Dead Creek drainage via the local municipal sewer system. Dead Creek begins south of an industrial zone adjacent to the Cerro property and flows slowly south through residential neighborhoods. The stream is bordered by a dense, narrow band of riparian trees and shrubs, including cottonwood, willow, mulberry, and box elder (Photo B-1). Homeowners have cleared to the creek's edge and have established lawn along several sections. Within the residential area (east of Route 3) the stream is crossed, via

¹ Also endangered in Missouri.

culverts, by seven roads. At the Judith Lane road crossing, the road culvert has been set approximately one foot higher than the observed water level, apparently to allow drainage of the channel only during high-water events. The pooled channel behind this road is connected to a small pond located at the end of Walnut Street where herons, painted turtle, wood duck, fish, and evidence of beaver (chewed trees, see Photo B-2) were observed (see Table B-1).

Downstream of the impounded channel, Dead Creek segments C and D flow south through bordering wetlands (Photo B-3, note Green Backed Heron in center of photograph). For a short section, adjacent to Parks College, the creek is routed through a culvert under a parking area. Throughout the rest of the creek's length it is bordered by either riparian vegetation (Photo B-4) or lawn (Photo B-5). Emergent and aquatic vegetation occurs along the creek's shores. Wildlife observed in and adjacent to the stream included herons, turtles, songbirds, squirrel, and raccoon. Small fish and frogs were observed throughout the creek's length.

West of Route 3, the creek flows south and west through the American Bottoms floodplain. This area contains active and abandoned agricultural land divided by levees and railroad right-of-ways. After crossing Route 3 Dead Creek flows under a railroad right-of-way and is joined by a stream draining land from the north. North of the confluence of these two waterways is a road that cuts SE to NW across the floodplain, connecting Cahokia to Fox Terminal. To the north (upstream) of this road is a gas tank farm and fields. The stream was observed to flow south under the Fox Terminal road and into Dead Creek. A second dry culvert was observed west of the stream crossing in the vicinity of the north end of the Dead Creek borrow pond. This culvert appeared to drain the land north of the Fox Terminal road during high-water events when water from the tank farm and surrounding area becomes impounded behind the roadway.

Downstream of the confluence of the two waterways, Dead Creek flows through riparian woods and shrubs and into a borrow pond. The pond appears to have been excavated during the construction of the local levee system. The United States Geological Survey (USGS) map of the area (Cahokia) indicates that the pond was dug to its current shape sometime after 1954. The pond is the largest non-flowing water body in the area. Its shore is surrounded with mature riparian trees and emergent wetland vegetation. Ducks, herons, and fish were observed in the pond.

Dead Creek forms the outlet of the pond, draining south through a pump station under the levee (Photo B-6) and into the ditched section of Prairie du Pont Creek. At the confluence and above it (Photo B-7) the ditch shore is vegetated with grasses, herbs, and small shrubs. The channel flows northwest to Arsenal Island on the Mississippi River. Arsenal Island contains areas of mature riparian woods and agricultural fields. The shoreline of the lower end of the ditch (referred to on the USGS map as Cahokia Chute) is lined with riparian woods, principally large cottonwoods and willow (Photo B-8). Large catfish, wood duck, wading birds, and turtles were observed in the channel. Cahokia Chute forms the eastern border of Arsenal Island. The waterway flows north to south, draining the region northeast of the island. It appears that during times when the Mississippi River is high, the River uses the Chute channel to flow around Arsenal Island. Any water from the Dead Creek watershed

therefore only flows through the lower half of the Cahokia Chute between the confluence with the ditched Prairie du Pont and the Mississippi River. The remains of the bald eagle nest and congregating wading birds were observed at the southern tip of Arsenal Island, where the Chute flows into the Mississippi.

Almost the entire length of the Dead Creek study area is bordered by wetlands. Most of the wetlands are confined to a narrow riparian strip adjacent to the Creek. More extensive wetlands occur west of Route 3, particularly in the vicinity of the borrow pond. The Creek's wetlands appeared healthy with no evidence of ecological stress (no chlorotic plants, no nonspecific stands of vegetation, no areas of dying or dead vegetation, observable presence of diverse pelagic communities in the stream, no observed surface water sheens or sediment staining). The wetlands also appeared to support a diverse aquatic and terrestrial wildlife community, with abundant prey species (i.e. fish, frogs, turtles) and predatory species (i.e. wading birds, waterfowl, raccoons) present. The wetlands west of Route 3 receive water from both Dead Creek and from drainages to the north, including the area around the gas tank farm.

Summary

During the field survey and subsequent contact with state and federal agencies, three categories of sensitive environments were located in the Monsanto/Dead Creek area: Habitat Known to be Used by Federal Designated or Proposed Endangered or Threatened Species, Habitat Known to be Used by State Designated Endangered or Threatened Species, and Wetlands. These three categories are interrelated with the rare species documented all utilizing wetland/waterway habitats. The rare species observed forage over a wide area, with the Dead Creek watershed forming only a small part of their available feeding territory.

The Dead Creek watershed also appears to support a diverse plant and animal community. While much of the Creek flows through residential neighborhoods, sufficient natural riparian vegetation remains to support local aquatic and terrestrial communities. No evidence of ecological stress was evident in the upper Creek, nor anywhere else along the waterway's path to the Mississippi.

2.2 Site Conceptual Model

The foundation of an ERA work plan is the site conceptual model. It integrates information from the preliminary observations at the site (usually incorporated into the screening level risk assessment). According to EPA guidance, the conceptual model addresses:

environmental setting and contaminants known or suspected to exist at the site; contaminant fate and transport mechanisms; mechanisms of ecotoxicity and likely categories of potentially affected receptors; complete exposure pathways.

Figure 1C-1 provides a Preliminary Conceptual Model diagram. It illustrates potential contaminant transport from the contaminated media through the potentially affected habitats to important ecological receptors. We will revisit and, if necessary, amend this model after completion of the site reconnaissance survey.

The site conceptual model is consistent with our knowledge of the area to date as described in our 1996 survey and in the recent EPA Preliminary Risk Assessment.

Environmental Setting and Contaminants Known Or Suspected To Exist At The Site

Subsection 2.1 describes the environmental setting. The EPA Preliminary Ecological Risk Assessment describes the contaminants known or suspected to be at the site. The environmental setting is an aquatic environment with extensive wetlands, riparian woods, narrow, shallow streams, broader semi-impounded basins, and floodplain.

The likely contaminants include those addressed in the EPA assessment:

metals (arsenic, barium, cadmium, chromium, lead, mercury);

PCBs;

PAHs;

dioxin.

The eventual execution of the QAPP/FSP will analyze for a broader list of potential contaminants in sediments, surface water, and biota. We will evaluate those data within the baseline risk assessment and add contaminants as appropriate based on: frequency of occurrence within a particular media, likely bioavailabilty, evidence for bioaccumulation, toxicity to likely receptors, and comparison of concentrations to a reference area. Obviously, the addition of more contaminants of concern may require changes in the conceptual model for the baseline risk assessment depending upon the fate, transport, and biological properties of these contaminants. The EPA guidance recognizes and encourages this iterative process.

Contaminant Fate and Transport Mechanisms

In an aquatic system such as occurs over Dead Creek Sectors B through F, and M, various physical, chemical, and biological transport mechanisms will affect the fate of contaminants. All the contaminants listed in the EPA Preliminary Assessment adhere to particulate matter to varying degrees. Therefore, the conceptual model should address those mechanism affecting particle distribution in aquatic systems. These include:

particulate runoff from the watershed,
deposition in areas of sluggishly flowing waters,
erosion in faster moving stream segments, and
resuspension of particulates from the stream bed and over the floodplain.

Chemicals with lower particle affinities may be more subject to dissolution in and transport by surface water. Increasing solubility generally correlates with increasing bioavailability. In particular, various metals on the preliminary list of contaminants are subject to transport in soluble form, depending on their valence states.

The major biological mechanisms affecting fate and transport are:

biological uptake directly from environmental media; and,

bioaccumulation through ingestion of prey or media;

biomagnification through the food chain.

Several of the contaminants are subject to one or all of these biological fate and transport mechanisms.

The baseline risk assessment will describe each contaminant of concern (including any added after the next sampling rounds) in terms of the transport mechanisms most likely to affect it. The EPA Preliminary Risk Assessment provides a description of the likely transport mechanisms for each of the contaminants or classes of contaminants listed.

Mechanisms of Ecotoxicity And Likely Categories Of Potentially Affected Receptors

The EPA Preliminary Risk Assessment summarizes the ecotoxicological properties of the potential contaminants in sufficient detail to develop the first iteration of the conceptual model. As indicated in the summaries, the various contaminants may affect the survival and reproductive capacity of benthic biota, fish, invertebrates, vascular plants, and algae.

The baseline risk assessment will provide detailed ecotoxicity profiles for the final list of contaminants of concern. These will include summaries of the toxicity of these chemicals to receptors likely to occur in the Dead Creek environment (insofar as these exist), and a selection of the most appropriate toxicity factor to use in the baseline risk assessment.

The categories of likely potentially affected receptors for an aquatic system such as the Dead Creek, Sectors B through F, and M include:

The benthic macroinvertebrate community;

warm water fish (e.g., largemouth bass);

waterfowl (e.g. mallard) that feed on plants and macroinvertebrates (including crayfish); piscivorous birds (e.g., great blue heron, bald eagle);

aquatic mammals (e.g. muskrat) that feed on plants and macroinvertebrates (including crayfish);

aquatic mammals (e.g., river otter or racoon) that feed on fish and macroinvertebrates (including crayfish).

There is also some potential for exposure to terrestrial plants and wildlife from exposure to contaminants in soil or through exposure to soil based food chains.

Complete Exposure Pathways

The USEPA guidance indicates that the risk assessment must identify complete exposure pathways before a quantitative evaluation of toxicity to allow the assessment to focus on those contaminants that can reach ecological receptors. The likely complete exposure pathways in Dead Creek, Sectors B through F, and M are:

sediment to benthic invertebrates via direct contact and ingestion;

sediment and surface water to aquatic plants via uptake;

surface water to invertebrates and fish though direct contact and ingestion;

benthic biota (including crayfish) to higher order predators (e.g. fish) through food chain;

forage fish and crayfish to piscivorous fish, mammals, or birds;

soil to soil invertebrates along the creek banks or floodplain;

soil to plants or wildlife along the creek banks or floodplain.

3.0 SELECTION OF CHEMICALS OF ECOLOGICAL CONCERN (COECs)

As indicated in subsection 2.2, the USEPA Preliminary Risk Assessment provides an initial list of contaminants of ecological concern (COECs). The QAPP/FSP includes target analytes beyond these initial COECs. These target analytes include: VOCs, metals, SVOCs, PCBs, and pesticides.

The baseline risk assessment will re-evaluate the COEC list based in the results of the proposed sampling and analysis of surface water, sediment, and biota. The criteria for final selection include:

Comparison to Background – the baseline risk assessment will eliminate a contaminants which occurs below the maximum concentration measured at a local reference area for a given medium;

Frequency of Detection – the baseline risk assessment will retain a contaminant detected in more than 5% of samples for a particular media.

For those compounds which exceed background and/or are frequently detected in a particular medium, the baseline risk assessment will add them to the final list of COECs if they exhibit any of the following characteristics:

Toxic – exhibit toxicity (based on scientific literature) to the receptors likely to occur along the Dead Creek, Sectors B through F and M, or adjacent habitats;

Bioaccumulative – are likely to bioconcentrate or biomagnify through the food chains represented in Dead Creek, Sectors B through F, and M, and adjacent habitats;

Persistent – are likely to remain in environmental media over time frames that are long relative to the life spans or exposure periods of receptors likely to occur in Dead Creek, Sectors B through F, and M, and adjacent habitats.

The ERA will include a current review of toxicological information for all COECs on the final list. Where available, this information will include toxicity benchmarks that are applicable to water and sediments.

4.0 IDENTIFICATION OF RECEPTORS, ASSESSMENT ENDPOINTS, AND MEASURES OF EFFECT

4.1 Receptors

This subsection of the ecological risk assessment identifies the receptors (receptor species) and provides the rationale for their selection as representative of the species that occur or are likely to occur near the site. This subsection also provides an ecological characterization of each receptor for eventual use in developing the exposure assessment.

The selected receptors represent those types of organisms most likely to encounter the contaminants of concern at the site. They include a reasonable (although not comprehensive) cross-section of the major functional and structural components of the ecosystem under study based on:

relative abundance and ecological importance within the selected habitats; availability and quality of applicable toxicological literature; relative sensitivity to the contaminants of concern; trophic status; relative mobility and local feeding ranges;

ability to bioaccumulate contaminants of concern.

The selected species represent different feeding guilds. This representative species approach for assessing exposures for wildlife is a common practice for assessing risk. A guild is a group of animals within a habitat that use resources in the same way. Coexisting members of guilds are similar in terms of their habitat requirements, dietary habits, and functional relationships with other species in the habitat. Guilds may be organized into potential receptor groups. The use of the guild approach allows focused integration of many variables related to potential exposure. These variables include characteristics of COECs (toxicity, bioaccumulation, and mode of action), and characteristics of potential receptors (habitat, range and feeding requirements, and relationships between species). This approach evaluates potential exposures to all animals by considering the major feeding guilds found in a habitat. It is assumed that evaluation of the potential effects of COECs to the representative species will be indicative of the potential effects of COECs to individual member classes of organisms within each feeding guild.

The selected species represent the ecological community and its sensitivity to the contaminants of concern. They are: benthic invertebrates, shellfish, local fin fish, great blue heron, mallard, bald eagle, muskrat, and river otter or raccoon.

Benthic invertebrates

Benthic invertebrates are potential receptor species in Dead Creek because they:

have the greatest exposure to sediments;

provide food for bottom-feeding fish species (in the river);

are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions;

Warm Water Fish Species

Warm water resident fish species were selected to reflect local sediment and water quality conditions. The typical warm water fish species such as centrachids (sunfish, bass) and bottom feeding fish such as bullheads are likely and abundant local resident with a limited foraging range. These organisms are potential receptor species representing local fish because they are:

resident in this reach of the Dead Creek;

exposed to sediments as well as surface water;

represent forage fish and higher order predators feeding on smaller fish and invertebrates.

Aquatic Birds

We have selected great blue heron, mallard duck, and bald eagle to represent aquatic birds feeding in Dead Creek, Sectors B through F, and M for at least a portion of the time.

Great Blue Heron (Ardea herodias)

The great blue heron inhabits salt and freshwater environments, typically shallow waters and shores of lakes, flooded gravel pits, marshes and oceans. In marsh environments, the great blue heron is an opportunistic feeder; they prefer fish, but they will also eat amphibians, reptiles, crustaceans, insects, birds, and mammals. The diet varies but may include up to 100% fish. A Nova Scotia study found 6% forage fish (Atlantic silverside and mummichog), 52.6% eels, and 41.4% other fish in the diet of great blue heron (USEPA, 1993). A food ingestion rate for adult breeding birds of 0.18 g food/g body weight/day has been reported.

Great blue heron tend to forage near nesting sites (USEPA, 1993). A study in Minnesota measured the distance between nesting and foraging grounds to range from 0 to 2.7 miles. A Carolina study found the same distance to be 4 to 5 miles. The maximum distance great blue heron will fly between foraging areas is 9 to 13 miles (USEPA, 1993). The size of the feeding territory in a freshwater area in Oregon was 1.5 acres, while the feeding territory in an estuarine area was 21 acres.

These organisms are potential receptor species because they:

Consume near shore fish;

Have a foraging range about equal to the downstream area of the Dead Creek sectors;

Are a higher trophic level predator in the creek and Mississippi.

Great blue heron, therefore, represent piscivorous birds in this reach of the river.

Mallard (Anas platyrhynchos)

The mallard is the most common freshwater duck of the United States, found on lakes, rivers, ponds, etc. It is a dabbling duck, and feeds (usually in shallow water) by "tipping up" and eating food off the bottom of the water body. Primarily, it consumes aquatic plants and seeds (for instance, primrose willow and bulrush seeds), but it will also eat aquatic insects, other aquatic invertebrates, snails and other molluscs, tadpoles, fishes, and fish eggs. Ducklings and breeding females consume mostly aquatic invertebrates. The mallard's home range is variable, but an approximate range is 500 hectares. It prefers to nest on ground sheltered by dense grass-like vegetation, near the water.

Mallards are a potential receptor species because they:

Consume both aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level duck in the creek and in Mississippi.

Mallards, therefore, represent waterfowl in this reach of the river.

Bald Eagle (Haliaeetus leucocephalus)

Bald eagles are generally found in coastal areas, near lakes or rivers. Their preferred breeding sites are in large trees near open water. They are usually found in areas with minimal human activity.

Bald eagles, although primarily carrion feeders, are opportunistic and will eat whatever is plentiful including fish, birds, and mammals. Reported food ingestion rates range from 0.064 to 0.14 g/g/day. A study of adult breeding bald eagles in Connecticut estimated a food ingestion rate of 0.12 g/g/day (USEPA, 1993). A study of bald eagle diets in Maine indicated that their diets consisted of 76.7% fish, 16.5% birds, and 6.8% mammals (USEPA, 1993).

Foraging areas vary according to season and location. The USEPA (1993) reports a foraging length of 2 to 4.5 miles along a river.

These organisms are potential receptor species because they:

Consume fish;

Are a higher trophic level predator in the river;

Are sensitive to contaminants that biomagnify in the food chain.

The bald eagle, therefore, represents predatory birds in these sectors of Dead Creek.

Aquatic Mammals

This assessment assumes that either river otter (or racoon if the site reconnaissance indicates that otter are unlikely to occur in the area) and muskrat represent aquatic mammals in Dead Creek sectors B through F.

River Otter (Lutra canadensis)

The river otter can be found in primarily freshwater but also saltwater environments, but seems to prefer flowing-water habitats rather than still water. It has been found in lakes, marshes, streams, and seashores. It consumes largely fish, but is opportunistic and will consume aquatic invertebrates (crabs, crayfish, etc.), aquatic insects, amphibians, birds (e.g. ducks), small or young mammals, and turtles. They may also sift through sediment for food. The otter dens in banks, in hollow logs, or similar burrow-like places. Home range varies depending on habitat and sex, but an approximate measure is 300 hectares.

River offers are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live in or near the water;

Are a higher trophic level predator in the creek and in Mississippi.

River otters, therefore, represent higher trophic level aquatic mammals in this reach of the river.

Raccoon (Procyon lotor)

The raccoon is likely to be present because the creek and surrounding areas consist of its most preferred types of habitat (marshes and suburban residential areas). Because the raccoon is an omnivore, it is likely to experience greater exposure to than the muskrat which is primarily a herbivore. The raccoon is known to consume aquatic invertebrates (such as crayfish), fish, insects, mollusks, annelids, bird eggs, small passerine birds, small mammals such as squirrels, and plants (Chapman and Feldhamer, 1990).

Raccoon are a potential receptor species because they:

Consume fish and aquatic invertebrates;

Live near the water:

Are a higher trophic level predator in the creek and in Mississippi.

Raccoon, therefore, represent higher trophic level aquatic mammals in this reach of the river.

Muskrat (Ondatra zibethicus)

The muskrat is a semiaquatic large rodent which lives near freshwater and brackish aquatic environments: marshes, ponds, creeks, lakes, etc. It feeds largely on aquatic plants, but depending on location and time of year may also consume aquatic invertebrates (crayfish, crabs, etc.), small amphibians, turtles, fish, molluscs, and even young birds. The muskrat lives quite close to the water, either on the bank of the water body or constructing a lodge in the water body. Its home range is small (0.17 hectares on average) and one study found that muskrats remain within 15 meters of their primary dwellings 50 percent of the time.

Muskrats are a potential receptor species because they:

Consume aquatic plants and aquatic invertebrates;

Live on or near the water;

Are a lower trophic level omnivore in the creek and in Mississippi.

Muskrats, therefore, represent lower trophic level aquatic mammals in this reach of the river.

Soil invertebrates

Soil invertebrates are potential receptor species in Dead Creek banks and floodplain because

they:

have the greatest exposure to soil;

provide food for birds and mammals (in the river);

are relatively immobile (sessile) in habit, and therefore their general health and condition reflects local conditions;

4.2 Assessment Endpoints

Assessment endpoints are expressions of the environmental value to be protected at a site. Assessment endpoints are often not directly measurable. Therefore, assessment employs measures of effects. These are biological or measurable ecological characteristics which reflect the assessment endpoint (USEPA, 1997). Where the assessment endpoint is not directly measurable, the use of a measure of effect may result in some uncertainty in the risk characterization. Ultimately, the selection of assessment endpoints requires the consensus of the regulators, the regulated community, and state or local concerns. This work plan proposes the following assessment endpoints for the potentially-affected aquatic receptors and their habitats:

Sustainability (survival, growth, and reproduction) of warm water fish species typical of those found in similar habitats (incorporates the assessment of benthic macroinvertebrates and crayfish);

Survival, growth, and reproduction of local populations of aquatic wildlife represented by bald eagles, mallard duck, great blue heron, muskrat, and river otter or raccoon (incorporates the assessment of benthic macroinvertebrates and crayfish).

The assessment will evaluate risk relative to these assessment endpoints in Creek, Sectors B through F and M, collectively and individually, based on prior observations and the work proposed in the QAPP/FSP.

4.3 Selection of Measures of Effects

The measures of effect direct data collection needs for the baseline ecological risk assessment. They provide the actual measurements for estimating risk. A weight-of-evidence approach (Menzie et al., 1996) weighs each of the measures of effects by considering:

strength of association between the measure of effects and assessment endpoint; data quality; and study design and execution.

Strength of association refers to how well a measure of effects represents an assessment endpoint. The greater the strength of association between the measurement and assessment

endpoint, the greater the weight given to that measure of effect in the risk analysis.

The weight given a measure of effect also depends on the quality of the data as well as the overall study design and execution. The QAPP/FSP describes a sampling program that will provide information adequate for evaluating each selected measure. However, the risk assessment must evaluate the performance of the sampling effort and the variability and uncertainties associated with the results following implementation. The risk characterization gives higher weight to measures of effect that are based on good quality data and are obtained using study designs that account for confounding variables.

There is considerable uncertainty associated with estimating risks, because ecological systems are complex and exhibit high natural variability. Measures of effects typically have specific strengths and weaknesses related to the factors discussed above. Therefore, it is common practice to use more than one measure of effect to evaluate each assessment endpoint. This subsection describes the measures of effects and how the baseline risk assessment will use them to evaluate risks for each of the assessment endpoints.

TABLE 1 ASSESSMENT ENDPOINTS AND ASSOCIATED MEASURES OF EFFECTS

Assessment Endpoint 1: Sustainability of warm water fish in Creek Sector F

Measure of effect 1a: body burdens of COECs in selected fish species as a measure of exposure (compared to body burdens in fish from reference areas) and effects (compared to benchmark values).

Measure of effect 1b: COEC concentrations in surface waters as compared to applicable water quality criteria for protection of fish and wildlife.

Measure of effect 1c: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish:

Concentration of COECs in sediment;

Field assessment of benthic macroinvertebrate community structure (using EPA Rapid Bioassessment Protocol I, as described in Rapid Bioassessment Protocols for Use in Streams and Rivers, Benthic Macroinvertebrates and Fish, EPA/444/4-89-001.

Sediment toxicity tests.

Assessment Endpoint 2: Survival, growth, and reproduction of local populations of aquatic wildlife as represented by the bald eagle, mallard duck, great blue heron, muskrat, and river otter or raccoon in Creek Sectors B through F, and M

Measure of effect 2a: Wildlife species composition and habitat use.

Measure of effect 2b: Concentration of semi-volatile compounds (SVOCs), metals, mercury, Polychlorinated Biphenyls (PCBs), pesticides, cyanide, herbicides, and dioxin in aquatic and marsh plants for use in evaluating exposure via the food chains for mallard duck, river otter or raccoon, and muskrat.

Measure of effect 2c: Concentration of COECs in surface waters in comparison to wildlife benchmarks.

Measure of effect 2d: Concentration of COECs in forage fish and crayfish for use in evaluating exposure via the food chain for great blue heron and river otter or raccoon.

Measure of effect 2e: Concentration of SVOCs, metals, mercury, PCBs, pesticides, cyanide, herbicides, and dioxin in macroinvertebrates (including crayfish) for use in evaluating exposure via the food chain for mallard duck, river otter or raccoon and muskrat.

Measure of effect 2f: sustainability of a benthic macroinvertebrate community that can serve as a prey base for fish (includes three lines of evidence as in Assessment Endpoint 1).

Assessment Endpoint 3: Survival, growth, and reproduction of individuals within the local bald eagle population in Creek Sectors B through F, and M

Measure of effect 3a: Concentration of COECs in fish for use in evaluating exposure via the food chain.

Assessment Endpoint 4: Survival, growth, and reproduction of local populations of terrestrial wildlife along the banks and floodplain of Creek Sectors B through F, and M

Measure of effect 4a: Soil screening effect levels for the protection of wildlife, plants, and soil dwelling invertebrates.

4.3.1 Measures of Effects for Assessment Endpoint 1, Sustainability of Warm Water Fish

The COECs may exert direct effects on warm water fish through exposure in the water, sediment, or prey, and indirectly by affecting their prey, the macroinvertebrate community. The proposed measures of effects assess exposure pathways and potential effects. Some rely upon direct observations of conditions; some involve measures of toxicity; and others use literature values.

Measure of effect 1a: body burdens of COECs in selected fish species.

Purpose and Rationale. Fish exposed to bioaccumulative compounds in their diet or in water can accumulate these COECs in their tissues. Contaminants tend to accumulate in organs such as the liver and kidney to a greater degree than in the musculature. However, COEC levels in the muscle tissue and on a whole body basis are useful for evaluating risks to animals that eat fish. The assessment will use measurements of COECs in fish tissues to evaluate exposure and effects on the fish, and to provide data for use in other parts of the assessment.

Approach. The assessment will use this endpoint to evaluate exposure and effects. As a measure of exposure, it will compare body burdens of COECs in small forage fish, medium bottom-feeding fish and large piscivorous fish to those same fish species in the reference area. Therefore, the comparisons of fish body will help to assess if fish in Dead Creek are exposed to COECs in excess of those that occur in the reference area. The assessment will also use the body burden data as input to the food chain exposure models for the representative piscivores (the great blue heron, bald eagle, and the river otter or raccoon).

As a measure of effects, the assessment will compare measured body burdens to literature values at which effects have been reported. The Waterways Experiment Station (WES) of the Army Corps of Engineers provides an on-line database and The Society of Environmental Toxicology and Chemistry (Jarvinen and Ankley, 1999) provides a compilation of such residue effect levels. The assessment will query these databases. If body burdens exceed levels at which effects have been reported in the databases, it will be presumed that the measure of effect indicates the potential for effects in the selected fish species found in Dead

Creek.

Measure of effect 1b: COEC concentrations in surface waters as compared to applicable water quality criteria for protection of fish and wildlife.

Purpose and Rationale. Water concentrations provide a measure of exposure, and water quality criteria indicate levels above which effects may occur. This measure of effect will evaluate the potential for water concentrations of COECs in Dead Creek to cause adverse effects.

Approach: The assessment will compare measured concentrations of dissolved metals in surface waters to water quality criteria. Exposure of individual fish and the populations of fish in water will partly depend on the exposure field and the distribution and behavior of the fish. Thus, the area over which water quality criteria are exceeded becomes an important consideration when evaluating exposure. We will evaluate effects with respect to spatial extent and degree to which surface water concentrations exceed water quality criteria.

The USEPA has published an ECO-UPDATE entitled: "Ecotox Thresholds" that includes COEC-specific water quality benchmarks. If an Ecotox Threshold value is available for a COEC, the concentration of the COEC in water will be compared to its respective Ecotox Threshold value. When specific benchmarks are not available and when appropriate, USEPA has suggested using appropriate extrapolations between related species.

Measure of effect 1c: Sustainability of benthic macroinvertebrate communities that comprise a prey base

Purpose and Rationale. Benthic macroinvertebrates are an important source of food for many fish species. They experience direct sediment exposures due to their life histories. Exposures that result in reduced abundance, diversity, or biomass of these aquatic macroinvertebrates, could indirectly effect fish populations. Further, quantitative studies of benthic macroinvertebrates have a long history of use in water quality studies.

The assessment will use the sediment triad approach as part of a weight-of-evidence analysis to evaluate the sustainability of benthic macroinvertebrate communities in these water bodies. The sediment triad approach evaluates three elements of a benthic community:

field assessment of benthic macroinvertebrates;

sediment chemistry measurements;

sediment toxicity testing using indicator benthic macroinvertebrates.

Field assessment of benthic macroinvertebrate community

Effects will be evaluated by comparing the composition and abundance of benthic

macroinvertebrates within Dead Creek at different levels of concentrations of COECs in sediments (generally following EPA Rapid Bioassessment Level I Protocols in the field). These comparisons will help to estimate if there is a level above which effects are evident. Data from the reference areas will help to support the assessment because these reflect conditions in water bodies unaffected by site contaminants. If there are observable reductions in the abundance of benthic macroinvertebrates, we will assess the significance of this for the fish species that rely upon the macroinvertebrates for food as this is the basis for the assessment. This will be accomplished by relating the abundance and biomass of benthic macroinvertebrates to their production, and ultimately to the potential production of fish, using available production:biomass ratios from the literature.

Sediment chemical measurements

Concentrations of COECs in sediment will be compared to sediment benchmarks to judge whether adverse biological effects to benthic macroinvertebrates are plausible. The USEPA compares sediment chemical measurements to Effect Range-Low (ERL) values and Effect Range-Median (ERM) values (Long and Morgan, 1990). However, sediment concentrations which exceed ER-Ls and/or ER-Ms do not necessary indicate that adverse effects to benthic macroinvertebrates have occurred. The USEPA's sediment triad approach uses multiple lines of evidence to assess if benthic macroinvertebrates are adversely affected by sediment-associated contaminants.

The USEPA has published an ECO-UPDATE entitled: "Ecotox Thresholds" that includes COEC-specific sediment benchmarks. If an Ecotox Threshold value is available for a COEC, the concentration of the COEC in sediment will be compared its respective Ecotox Threshold value. When specific benchmarks are not available and when appropriate, USEPA has suggested that appropriate extrapolations between related species can be used.

Sediment toxicity testing

The assessment will use laboratory sediment bioassays conducted on sediments from Dead Creek and the reference area to evaluate the potential effects of whole sediment on representative benthic macroinvertebrates. The toxicity of the sediment will be compared to that of the standard control sediment used by the laboratory as part of the laboratory's standard operating procedures. Statistically significant decreases in survival and/or growth relative to controls will be considered a COEC-related effect when they can be related to exposures associated with COECs in the sediments.

4.3.2 Measures of Effects Associated with Assessment Endpoint 2

Survival, growth, and reproduction of local populations of aquatic wildlife populations represented by bald eagles, mallard duck, great blue heron, muskrat, and river otter or racoon (incorporates the assessment of benthic macroinvertebrates)

The assessment will use six measures of effects (some species-specific) to evaluate risks to the wildlife assessment endpoint. Food-chain modeling will estimate exposure to the four wildlife species.

Wildlife either sighted during prior site visits or likely to occur based on the evaluation of habitats was used to identify representative wildlife species.

Table 2. Representative Aquatic Wildlife Species Proposed for Assessing Risks of COECs to Wildlife.

Species	Feeding Guild	Primary Habitat	Use in ERA
Bald Eagle	Eats fish and other small animals	Aquatic	Evaluate exposure to COECs in aquatic food webs
Great Blue Heron	Eats fish and other small animals	Aquatic	Evaluate exposure to COECs in aquatic food webs
Mallard Duck	Eats plants and macroinvertebrates	Aquatic	Evaluate exposure to COECs in aquatic plants and macroinvertebrates
Muskrat	Eats plants and some macroinvertebrates (e.g., clams)	Aquatic	Evaluate exposure to COECs in aquatic plants and in macroinvertebrates
River otter or	Eats fish, other small animals and some macroinvertebrates	Aquatic	Evaluate exposures to COECs in fish and macroinvertebrates

The assessment will use exposure models to evaluate different routes of exposure including ingestion of water, sediment and food (plants, benthic macroinvertebrates and fish). This subsection describes the measures of effects and the general model used to evaluate exposures.

Measure of effect 2a: Wildlife species composition and habitat use.

Purpose and Rationale. The measure of effect directly examines the receptors – wildlife – to estimate if they are using the various sectors of Dead Creek. The assessment is a measure of the degree to which local and migratory wildlife use the habitat and the extent to which it supports their needs.

Approach: The assessment will compare the composition and habitat use by wildlife to observations of species composition of wildlife and their use of a reference area. A wildlife biologist will make these observations This type of survey is qualitative. The strength of the

analysis is that it indicates whether Dead Creek can support wildlife species comparable to unaffected reference areas. However, because of the qualitative nature of the observations and the high natural variability that can exist in wildlife populations, direct observations may not reveal effects.

Measure of effect 2b: Concentrations of COECs in aquatic and marsh plants.

This measure of effect will be conducted within Dead Creek Segments B to F, and M and the reference areas.

This plan recommends collecting aquatic and marsh plants for analysis of COECs because some species of wildlife using Dead Creek and wetlands eat aquatic and marsh plants. This is a potentially complete exposure pathway for wildlife. The QAPP/FSP describes the details of the aquatic and marsh plant collection and analysis.

Purpose and Rationale. The assessment will compare measures of COECs in submerged aquatic and emergent marsh vegetation within Dead Creek and a reference water body. Waterfowl graze on aquatic plants. Herbivorous mammals such as the muskrat eat aquatic and emergent vegetation in wetlands. If plants take up metals and PAHs from the water or sediments, waterfowl and herbivorous mammals could be exposed to these COECs in their diet.

As the QAPP/FSP indicates, fruiting bodies/leaves and roots from aquatic plants and emergent plants will be composited separately.

Approach: The endpoint will be evaluated in multi-pathway exposure models for the mallard and the muskrat that considers sediment, water, and food. Exposures to water fowl and herbivorous mammals within the Dead Creek sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas. The COEC concentrations measured in submergent aquatic plants will be used to evaluate potential dietary exposures to the mallard, which graze on aquatic plants. The COEC concentrations measured in submergent and emergent plants will be used to evaluate potential dietary exposures to the muskrat, which graze on greens.

Measure of effect 2c: Concentration of COECs in surface waters.

Purpose and Rationale. Many wildlife species will use Dead Creek and associated wetlands as a drinking water source. The presence of COECs in water could be a source of exposure to these species. This measure of effect examines this potential route of exposure.

Approach: This endpoint will be evaluated in multi-pathway exposure models for the mallard and the great blue heron that considers sediment, water, and food. The assessment will compare exposures to these selected representative species within the Dead Creek sectors to:

1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

Measure of effect 2d: Concentration of COECs in fish.

Purpose and Rationale: Some wildlife species such as the bald eagle, the great blue heron eat primarily fish. This measure of effect evaluates this potential route of exposure.

Approach. Fish will be collected and analyzed for COECs. The COEC levels measured in fish will be used in the multi-pathway exposure model for the bald eagle and the great blue heron that considers sediment, water, and food. Exposures to the bald eagle and the great blue heron within the Dead Creek Sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

Measure of effect 2e: Concentration of metals and PAHs in benthic macroinvertebrates (including crayfish).

Purpose and Rationale. Waterfowl (such as the mallard) and mammals (such as the muskrat) eat benthic macroinvertebrates as a portion of their diet. This measure of effect evaluates this potential route of exposure.

Approach: Benthic macroinvertebrates and crayfish will be collected and analyzed for COECs. The COEC levels measured in benthic macroinvertebrates will be used in a multipathway exposure model for the mallard and for the muskrat that considers sediment, water, and food. Exposures to water-fowl and mammals within the Dead Creek Sectors will be compared to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

4.3.3 Measures of effects Associated with Assessment Endpoint 3

Assessment Endpoint 3 is survival, growth, and reproduction of individuals within the local bald eagle population in Creek Sectors B through F, and M.

Measure of effect 3a: Concentration of COECs in forage fish for use in evaluating exposure via the food chain.

Purpose and Rationale. Bald eagle may use fish in Dead Creek and associated wetlands as food. The presence of COECs in fish could be a source of exposure to this species. This measure of effect examines this potential route of exposure.

Approach: This endpoint will be evaluated in a an exposure model for the bald eagle. The assessment will compare exposures to: 1) appropriate NOAEL and LOAEL values, and 2) exposures that occur in reference areas.

4.3.4 Measures of Effect Associated with Assessment Endpoint 4

Measure of effect 4a: COEC concentrations in soil samples from Creek bank and floodplain as compared to applicable soil screening levels for protection of wildlife, plants, and soil dwelling invertebrates.

Purpose and Rationale. Soil concentrations provide a measure of exposure, and screening level criteria indicate levels above which effects may occur. This measure of effect will evaluate the potential for soil concentrations of COECs in Dead Creek banks and floodplains to cause adverse effects.

Approach: The assessment will compare measured concentrations of total contaminant concentrations in soils to existing (e.g. Oak Ridge National Laboratory Toxicological Benchmarks for Wildlife; Oak Ridge National Laboratory Toxicological Benchmarks for Screening Potential Effects on Terrestrial Plants; Oak Ridge National Laboratory Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes).

We will also use any terrestrial soil screening concentrations or benchmarks developed by the time the proposed work occurs.

4.4 Structure of Wildlife Exposure Models

The general form of the wildlife exposure model is:

Exposure Dose (oral) = [Conc_{food} * Ingest_{food}] + [RAF * Conc_{soil} * Sediment_{diet} * Ingest_{food}]

Where:

Exposure Dose (oral) = dose of a COEC in ug/g-day

Conc_{food} = concentration of the COEC (ug/g) in the food (measured or estimated); this is the average and the 95 % CL concentration in the relevant exposure zone – an area determined by the size and locations of foraging areas. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas. We will also use the 95% CL and calculate risk from this exposure separately.

Ingest_{food} = amount of food ingested per day normalized to body weight (g/g-day) and usually expressed in terms of wet weight/wet weight

RAF - relative availability factor for COECs in sediment via incidental ingestion of sediment

Conc_{sediment} = concentration ug/g in the relevant exposure zone; this is estimated as an average concentration in the exposure zone for chronic exposure and effects, and as upper bound (e.g., maximum or hot spot concentrations) for evaluation of short-term or acute exposures. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas.

Sediment_{diet} = fraction of sediment in the diet; the product of this number and Ingest_{food} yields an estimate of the amount of sediment that is incidentally ingested

Sediments that are collected within shallow water (< 3 feet deep) in open water areas of Dead Creek, sediments along the bank, and soils adjacent to the creek (where available) will be used to assess incidental sediment ingestion. Sediments collected from the top 5 cm will be considered accessible to aquatic wildlife.

Because exposures to COECs associated with diet and sediment will be higher than surface water ingestion, this exposure pathway will not be estimated within the model. However, we will compare National Recommenced Water Quality Criteria for the protection of wildlife to surface water concentrations where such data and corresponding criteria are available.

Model Application

The model will be applied in several ways:

- Acute exposure: The potential for acute exposure is considered without incorporating
 information on foraging area. The rationale for this is that an acute exposure involves a
 short-term feeding or exposure event that does not have to be averaged over the foraging
 area. When calculating the potential for acute exposure, maximum concentrations are used
 within the geographically defined local population or Threatened and Endangered species.
 Locations that exceed exposure concentrations that could result in acute toxic effects are
 identified.
- 2. Chronic exposure to individuals: The potential for chronic exposure to individuals is considered by determining both the maximum concentration and calculating an average concentration of food and sediments at spatial scales defined by the foraging areas of the species. For example, exposure concentrations for a species with a foraging area of 10 ha would be determined by averaging the food and sediments concentrations within this spatial scale. A species with a foraging area of 0.1 ha would have an averaging area that is 100 times less.
- 3. Chronic exposure to the population. The local population as defined above is made up of a number of individuals. Because the success of the local population is not dependent on the risk to any particular individual, a wildlife exposure model will also be used to estimate chronic exposures to individuals throughout the local population. These estimates take into account the spatial distribution of COECs, the foraging areas of the individuals within the species, and possible spatial distributions of these individuals within the area that defines the local population. Results are used to estimate risks as a percentage of the local population. The local population is confined to individual animals that use Dead Creek and its associated wetlands and small ponds.
- 4. Acute and chronic exposures to the Bald Eagle. Because the Bald eagle is rare and the risk to the individual is considered, the wildlife exposure model will also be used to estimate exposures to the individual.

5.0 RISK CHARACTERIZATION

Risk results will be presented as calculated Hazard Quotients as well as other measures (e.g., presence of toxicity). These results will be incorporated into the weight of evidence approach in the form of graphs and tables and will be explained in narratives. Graphs will be used to illustrate the four factors that contribute to the weight of evidence evaluation.

5.1 Use of Hazard Quotients

Because the Hazard Quotient will be one of the more common methods used to express results, it is explained below. The method simply involves comparisons of exposure concentrations for COECs to concentrations at which effects are judged:

where:

Concentration exposure = the concentration or dose to which an organism is exposed

Concentration effects = the concentration or dose at or above which effects may occur

If the Hazard Quotient exceeds "1", there is a potential for an effect. To some extent, the higher the number above "1", the more likely that an effect would occur. Calculations of Hazard Quotients need to take into account spatial and temporal factors inasmuch as these are related to the effect that might occur to populations of biota. The COECs may have additive effects on organisms, and these will be evaluated by summing across compounds grouped according to the specific toxicological effect they may have.

5.2 Toxicity Reference Values for Wildlife

TRVs used in the toxicity quotient's denominator represent chronic oral No Observed Adverse Effect Levels (NOAELs). A TRV will be expressed as mg of COEC / kg Body Wt. of the test animal / day. TRVs will be selected from published studies cited in the following sources:

United States Fish and Wildlife Service (USFWS) biological reports that review and summarize literature on the ecological and toxicological aspects of COECs with special reference to fish and wildlife.

Toxicological animal studies cited in: Sample, B.E., D. M. Opresko and G.W. Suter II, 1996, *Toxicological benchmarks for wildlife: 1997 revision*, Oak Ridge National Laboratory, Oak Ridge, Tennessee;

The Waterways Experimental Station on-line database;

The Society of Environmental Toxicology and Chemistry's recently published database of residual effect levels (Jarvinen and Ankley, 1999);

Computer on-line data bases, such as Toxline, Biosis, Wildlife Fisheries Review, Pollution Abstracts, and Environmental Abstracts.

When reviewing the toxicological literature and selecting the most appropriate TRV, several factors will be considered including:

- Taxonomic relationship between the test animal and the indicator species;
- Use of laboratory or domesticated animals;
- Ecological relevance of the study endpoints—Studies with chronic toxicity endpoints, such as reproductive, growth, behavior and developmental endpoints, are targeted. Sensitive endpoints, such as reproductive or developmental toxicity, are preferentially selected because they are closely related to the selected assessment endpoints (e.g., population declines);
- Toxicological studies in which the chemical was administered through the diet of the test species are preferred over studies using other oral dosing methods, such as gavage; and
- Long-term studies representing chronic exposure are preferentially selected.

Dietary concentrations (mg/kg diet) cited in the reference study will be converted to mg/kg BW/day. If the daily dose reported in the selected study is a Lowest Adverse Effect Level (LOAEL), then the LOAEL will be converted to a NOAEL using a factor of 10. Interspecies correlations will be considered.

If toxicological animal studies are not available for a particular COEC, then QSAR will be considered and a surrogate chemical will be selected when possible. If the COEC can not be assessed quantitatively, then the risk to the COEC will be qualitatively discussed.

Species specific toxicity factors may not be available for all COEC. In such cases, the assessment will apply the following sequential steps to develop a toxicity factor.

- Use a toxicity value or criterion for the protection of exposed organisms, if an appropriate state or federal agency has proposed it.
- If criteria are unavailable, but appropriate data are available on NOAELs for the receptor species, use the lowest NOAEL for the receptor species.
- If an appropriate NOAEL is unavailable for the receptor species, use a NOAEL for a

species which is phylogenetically similar (within the same genera or family) and ecologically similar to the selected receptor species (e.g. from the same family of birds or mammals).

- If an appropriate NOAEL is unavailable for a phylogenetically similar species, extrapolate from an appropriate NOAEL value for other species (as closely related as possible) by dividing by 5 to account for extrapolations between families and by 10 to account for extrapolations between orders. Use the lowest appropriate NOAEL whenever several studies are available.
- In the absence of an appropriate NOAEL, if a LOAEL is available for a
 phylogenetically similar species, divide it by 10 to account for a LOAEL to NOAEL
 conversion. The LOAEL to NOAEL conversion is similar to EPA's derivation of
 human health RfD values, where LOAEL studies are adjusted by a factor of 10 to
 estimate NOAEL values.
- For calculating chronic toxicity values from data for sub-chronic tests, divide the resultant LOAEL or NOAEL by an additional factor of 10. This is consistent with the methodology used to derive human RfD values. EPA has no clear guidance on the dividing line between subchronic and chronic exposures. The present risk assessment follows recently developed guidance (Sample et al., 1996) which considers 10 weeks to be the minimum time for chronic exposure of birds and 1 year for chronic exposure of mammals. In addition to duration of exposure, the time when exposure to contaminant occurs is critical.
- In cases where NOAELs are available as a dietary concentration (e.g., mg contaminant per kg food), calculate a daily dose for birds or mammals based on standard estimates of food intake rates and body weights (USEPA, 1993c).

6.0 DISCUSSION OF UNCERTAINTIES AND EXPOSURE ASSUMPTIONS

Sources of uncertainty and variability within the ERA will be identified. The impact associated with these uncertainties will be qualitatively addressed. Sensitivity analyses will be conducted for the important exposure parameters that are used in the wildlife exposure models and for the TRVs that are used to determine risk to the representative wildlife species.

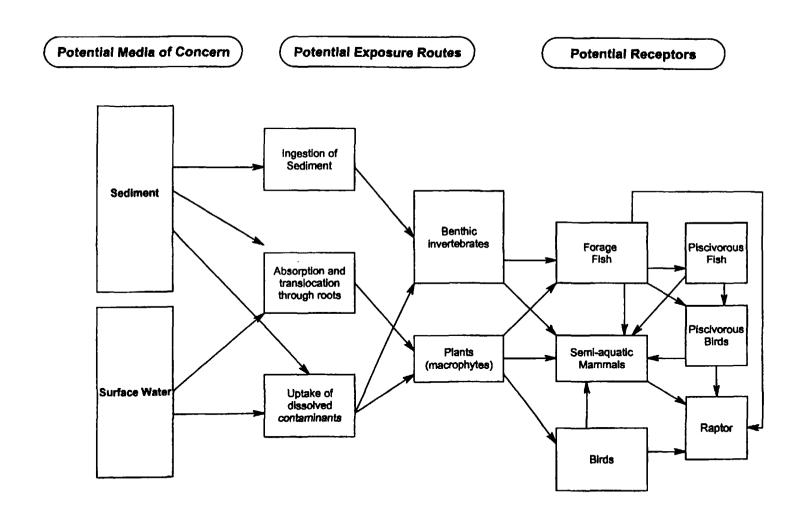
7.0 REFERENCES

Nagy, K.A., (1987). "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds". Ecological Monographs, 57(2), 1987, pp 111-128

US Environmental Protection Agency . (1993). Wildlife Exposure Factors Handbook Volume I. Washington D.C: Office of Research and Development; USEPA Report no. EPA/600/R-93/187a

Beyer, W.N., E.E. Connor, and S. Gerould. (1994). Estimates of soil ingestion by wildlife. J. Wildl. Manage. 58: 375-382.

Chapman, J.A., and G.A. Feldhamer. 1982. Wild Mammals of North America. Johns Hopkins University Press, Baltimore, MD and London.


Harris, C. J. (1968) Otters: a study of the recent Lutrinae. London, U.K.: Weidenfield & Nicolson.

Jarvinen, A.W. and G.T. Ankley, 1999. Linkage Effects to Tissue Residues: Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals. Pensacola FL, Society of Environmental Toxicology and Chemistry Press, 364pp.

Svihla, A.; Svihla, R. D. (1931) The Louisiana muskrat. J. Mammal. 12: 12 -28

U.S. Environmental Protection Agency. (1993). Wildlife Exposure Factors Handbook. U.S. EPA Office of research and Development. EPA/600/R-93/187a.

Figure 1-C-1: Preliminary Ecological Conceptual Model

APPENDIX B **PHOTOGRAPHS**

Photograph B-1 Dead Creek Section F, October 1999.

Photograph B-2 Low water level in Borrow Pit Lake, October, 1999.

Photograph B-3 Station 2 in Borrow Pit Lake, October, 1999.

Photograph B-4 Station 3 in Borrow Pit Lake, October, 1999.

Photograph B-5 Beach seining in reference location PDC-1 (Prairie DuPont Creek), October, 1999.

Photograph B-6 Reference location PDC-1 (Prairie DuPont Creek), October, 1999.

Photograph B-7 Reference location Ref2-1 (Creek Portion), October, 1999.

Photograph B-8 Reference location Ref2-2 (Lake Portion), October, 1999.

Photograph B-10 Shrimp, Palaemonetes kadiakensis, (diameter of sieve is 8 inches), October 1999.

Photograph B-11 Clam, *Pyganodon grandis*, samples. Specimen in hand is about 5 inches across, October 1999.

APPENDIX C SUMMARY STATISTICS FOR DATA USED IN ECOLOGICAL RISK ASSESSMENT

Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Pit Lake Sauget Area I

O	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
Herbicides, ug/l						
2,4,5-T	6		0%			0.25
2,4,5-TP (Silvex)	6		0%		!	0.25
2,4-D	6		0%			0.25
2,4-DB	6		0%	i		0.25
Dalapon	6		0%]			60
Dicamba	6		0%	Ì		0.60
F. 1 - 1 - 1 - 1						
Dichloroprop	6		0%			3.00
Dinoseb	6		0%	ľ		3.00
MCPA	6		0%		1	60
MCPP	6		0%	i		60
Pentachlorophenol	6		0%			0.50
			- 0 /6			
Metals, mg/l	_ 1	_	1	1	_	
Aluminum	6	6	100%	0.039	3.4	0.92
Antimony	6		0%	1		0.01
Arsenic	6]	5	83%	0.0032	0.015	0.0
Barium	6	6	100%	0.045	0.32	0.14
7.474		U		0.043	0.32	
Beryllium	6		0%			0.002
Cadmium	6		0%			0.003
Calcium	6	6	100%	47	89	58
Chromium	6	1	17%	0.0041	0.0041	0.005
Cobalt	6	1	17%	0.0015	0.0015	0.004
Copper	6	6	100%	0.0016	0.012	0.01
Cyanide, Total	6		0%			0.01
ron	6	6	100%	0.5]	8.7	2.28
ead	6	5	83%	0.002	0.02	0.01
Magnesium	ě l	6	100%	26	33	31
Manganese	6	6	100%	0.082	1.7	0.39
Mercury	6		0%			0.0001
Molybdenum	6	3	50%	0.0028	0.004	0.004
Nickel	6	6	100%	0.0069	0.021	0.01
Potassium	6	6	100%	5.1	7.6	6.58
Selenium	ě l	ŭ	0%	•	٠.٠	0.01
		ļ				
Silver	6		0%	i i		0.01
Sodium	6	6	100%	21	24	22
l'hallium l	6		0%			0.01
/anadium	6 [4 [67%	0.003	0.014	0.01
Zinc	6	6	100%	0.0073	0.075	0.03
luoride (mg/l)	6	6		0.24	0.29	0.26
			100%			
lardness as CaCO3 (mg/l)	6	6	100%	220	350	272
Ortho-Phosphate-P (mg/l)	6	6	100%	0.063	0.83	0.25
ĎĤ `¨	6	6	100%	7.4	9.7	8.47
Suspended Solids (mg/l)	6	5	83%	8	160	46
Total Dissolved Solids (mg/l)	6	6	100%	280	480	358
Total Phosphorus (mg/l)	6	6	100%	0.13	1.2	0.37
PCB, ug/l	T					
Decachlorobiphenyl	6	İ	0%	ļ	ļ	0.25
Dichlorobiphenyl	ě		0%		l	0.05
leptachlorobiphenyl		1			l	
	6	İ	0%	1	l	0.15
lexachlorobiphenyl	6	ł	0%	- 1	ł	0.10
/lonochlorobiphenyl	6		0%	I	į	0.05
Ionachlorobiphenyl	6		0%			0.29
Octachlorobiphenyl	6		0%	ļ	l	0.15
		ł		l		
Pentachlorobiphenyl	6	ł	0%	1	Į	0.10
etrachlorobiphenyl	6		0%	t		0.10
richlorobiphenyl	6	ľ	0%	ł	ł	0.05
	- 1	ŀ	-~}	l	l	2.00
otal PCBs						
	6)	0%	1	J	0.05
Pesticides, ug/l	ŀ	ŀ				
,4'-DDD	6	l	0%	1		0.05
,4'-DDE	6	1	0%	Į		0.05
4'-DDT	ĕ		0%	l		0.08
		ļ		J	ļ	
otal DDT	6 (0%	ļ	ŀ	0.0
Ndrin	6	1	0%	1		0.03
ا المناه المناتة	6	Ì	0%	ļ		0.03
upna Chiordane						
Npha Chlordane		او		0.00047	0.004	
lpha-BHC	6	2	33%	0.00047	0.001	0.0
		2 3 2		0.00047 0.0096 0.00013	0.001 0.02 0.0022	

Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Pit Lake Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Average Concentration
Dieldrin	6	1	17%	0.001	0.001	0.04
Endosulfan I	6	2	33%	0.0015	0.0024	0.02
Endosulfan II	6	_	0%	***************************************	0.002	0.05
Endosulfan sulfate	6	1	17%	0.0032	0.0032	0.04
Endrin	6	1	17%	0.00095	0.00095	0.04
Endrin aldehyde	6	2	33%	0.0016	0.0032	0.03
Endrin ketone	6	1	17%	0.0027	0.0027	0.04
Gamma Chlordane	6		0%		****	0.03
gamma-BHC (Lindane)	6	2	33%	0.0024	0.0038	0.01
Heptachlor	6	3	50%	0.0022	0.0029	0.01
Heptachlor epoxide	6	2	33%	0.0009	0.00096	0.02
Methoxychlor	6		0%			0.25
Toxaphene	6		0%		ļ	2.50
SVOCs, ug/l						
1,2,4-Trichlorobenzene	6		0%			5.00
1,2-Dichlorobenzene	6		0%			5.00
1,3-Dichlorobenzene	6		0%			5.00
1,4-Dichlorobenzene	6		0%			5.00
2,2'-Oxybis(1-Chloropropane)	6		0%			5.00
2,4,5-Trichlorophenol	6	ļ	0%			5.00
2,4,6-Trichlorophenol	6	ļ	0%			1.05
2,4-Dichlorophenol	6		0%			5.00
2,4-Dinitrophenol	6		0%			7.00
2,4-Dinitrotoluene	6		0%			5.00
2,6-Dinitrotoluene	6		0%	Į.		5.00
2-Chloronaphthalene	6		0%	:		5.00
2-Chlorophenol	6		0%		1	5.00
2-Methylnaphthalene	6		0%	Ī		5.00
2-Methylphenol (o-cresol)	6		0%			5.00
2-Nitroaniline	6	1	0%		1	25
2-Nitrophenol	6		0%	ł	ŀ	5.00
3,3'-Dichlorobenzidine	6		0%	ł		10
3-Methylphenol/4-Methylphenol	6		0%			5.00
3-Nitroaniline	6		0%			25
1,6-Dinitro-2-methylphenol	6		0%		Į.	6.50
1-Bromophenylphenyl ether	6		0%		ľ	0.50
1-Chloro-3-methylphenol	6	i	0%			5.00
I-Chloroaniline	6		0%	i	J	10.00
1-Chlorophenylphenyl ether	6		0%			5.00
1-Nitroaniline	6		0%		l	25
I-Nitrophenol	6	i	0%		l	25
Acenaphthene	6		0%		j	5.00
Acenaphthylene	6		0%			5.00
Anthracene	6	J	0%			5.00
Benzo(a)anthracene	6	İ	0%	ļ	:	5.00
Benzo(a)pyrene	6		0%	1		5.00
Benzo(b)fluoranthene	6		0%			5.00
Benzo(g,h,i)perylene Benzo(k)fluoranthene	6		0%			5.00
ois(2-Chloroethoxy)methane	6		0% 0%			5.00
	6	J		J	J	5.00
bis(2-Chloroethyl)ether	6		0%			5.00
bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	6 6		0% 0%			0.90
		- 1			ļ	5.00
Carbazole	6	1	0%			5.00
Chrysene	6	i	0%			5.00
Di-n-butylphthalate	6		0%		ĺ	5.00
Di-n-octylphthalate	6		0%			5.00
Dibenzo(a,h)anthracene	6		0%			5.00
Dibenzofuran Diethylohthalate	6		0%		ľ	5.00
Diethylphthalate	6		0%			5.00
Dimethylphthalate	6	ا ا	0%		ا ـ م	5.00
luoranthene	6	1	17%	0.7	0.7	4.28
luorene	6		0%		j	0.50
lexachlorobenzene	6		0%		ł	5.00
lexachlorobutadiene	6		0%		1	5.00
lexachlorocyclopentadiene	6		0%		J	5.00
lexachloroethane	6		0%	1	ł	0.95
ndeno(1,2,3-cd)pyrene	6		0%	l		5.00
sophorone	6		0%			5.00

Site Surface Water Summary Statistics Dead Creek Sector F and Borrow Pit Lake Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
N-Nitroso-di-n-propylamine	6		0%			5.00
N-Nitrosodiphenylamine	6		0%			2.50
Naphthalene	6		0%			5.00
Nitrobenzene	6		0%			1.75
Pentachlorophenol	آ آ آ		0%			2.50
Phenanthrene	l 6	1	17%	0.7	0.7	4.28
Phenol	اة	·	0%	J	•	5.00
Pyrene	6		0%			5.00
Total PAHs	6	1	17%	0.7	0.7	4.3
VOCs, ug/l						
1,1,1-Trichloroethane	6		0%			2.5
1,1,2,2-Tetrachloroethane	6		0%			2.5
1,1,2-Trichloroethane	6		0%			2.5
1,1-Dichloroethane	6		0%	}		2.5
1,1-Dichloroethene	6		0%			2.5
1,2-Dichloroethane	6		0%			2.5
1,2-Dichloropropane	6		0%			2.5
2-Butanone (MEK)	6		0%	ļ		12.5
2-Hexanone	6		0%			12.5
4-Methyl-2-pentanone (MIBK)	6		0%	ſ		12.5
Acetone	6	3	50%	13	18	20
Benzene	6	1	17%	1.7	1.7	0.78
Bromodichloromethane	6		0%			2.5
Bromoform	6		0%			2.5
Bromomethane (Methyl bromide)	6		0%			4.9
Carbon disulfide	6		0%			2.5
Carbon tetrachloride	6		0%	ļ		2.5
Chlorobenzene	6		0%			2.5
Chloroethane	6		0%			5
Chloroform	6		0%			2.5
Chloromethane	6 }		0%	ł		5
cis-1,3-Dichloropropene	6	ļ	0%		i	0.5
Cis/Trans-1,2-Dichloroethene	6	i	0%	ļ		2.5
Dibromochloromethane	6	ľ	0%	ľ	ľ	2.5
Ethylbenzene	6		0%		İ	2.5
Methylene chloride	6	1	0%			2.35
Styrene	6	l	0%			2.5
Tetrachloroethene	6		0%			2.5
Toluene	6		0%			2.5
trans-1,3-Dichloropropene	6	ļ	0%]			2.5
Trichloroethene	6		0%			1.35
Vinyl chloride	6		0%	ļ		5
(ylenes, Total	6 [ſ	0%[ſ	ĺ	2.5

Site Surface Water Dioxin Data Summary Dead Creek Sector F and Borrow Pit Lake Sauget Area I

	I					
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Dioxins and Furans, ug/l						
1,2,3,4,6,7,8,9-OCDD	6	5	83%	0.000573	0.00143	0.000707667
1,2,3,4,6,7,8,9-OCDF	6	5	83%	0.0000503	0.00026	0.000120533
1,2,3,4,6,7,8-HpCDD	6	4	67%	0.0000442	0.0000692	4.41417E-05
1,2,3,4,6,7,8-HpCDF	6	6	100%	0.0000134	0.0000505	2.71667E-05
1,2,3,4,7,8,9-HpCDF	6	1	17%	0.000548	0.000548	9.44917E-05
1,2,3,4,7,8-HxCDD	6		0%		ì	2.73333E-06
1,2,3,4,7,8-HxCDF	6	1	17%	0.000024	0.000024	0.00000605
1,2,3,6,7,8-HxCDD	6	i	0%			2.55833E-06
1,2,3,6,7,8-HxCDF	6	1	17%	0.0000089	0.0000089	3.39167E-06
1,2,3,7,8,9-HxCDD	6		0%		ì	2.65833E-06
1,2,3,7,8,9-HxCDF	6	ļ	0%	}		2.66667E-06
1,2,3,7,8-PeCDD	6		0%			3.19167E-06
1,2,3,7,8-PeCDF	6		0%	•		2.04167E-06
2,3,4,6,7,8-HxCDF	6		0%			0.000002375
2,3,4,7,8-PeCDF	6		0%			0.00000215
2,3,7,8-TCDD	6		0%			2.95833E-06
2,3,7,8-TCDF	6		0%		ĺ	2.51667E-06
Total HpCDD	6	4	67%	0.0000935	0.000128	9.07333E-05
Total HpCDF	6	5	83%	0.0000416	0.0006	0.00016505
Total HxCDD	6	2	33%	0.0000062	0.0000902	0.00001905
Total HxCDF	6	2	33%	0.0000249	0.000581	0.000103583
Total PeCDD	6		0%			3.19167E-06
Total PeCDF	6		0%			0.0000021
Total TCDD	6		0%			2.95833E-06
Total TCDF	6		0%			2.51667E-06

Appendix C-1

Dead Creek Sector F Surface Water Data Summary
Sauget Area I

Compounds	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds Herbicides, ug/l	Analyzed	Detected	Detection	Detected	Detected	Concentration
2,4,5-T (ug/l)	3	1	0%		Ì	0.25
2,4,5-TP (Silvex)	3		%			0.25
2,4-D) š		J %			0.25
2.4-D8) 3 [0%]	0.25
Dalapon	3		0%			60
Dicamba	3		0%			0.60
Dichloroprop	3		0%			3.00
Dinoseb	3		0%			3.00
MCPA	3		0%			60
MCPP	3 3		0%			60
Pentachiorophenol Metals, mg/l	 3 		0%			0.50
Aluminum	3	3	100%	0.039	0.55	0.25
Antimony	3	3	0%	0.033	0.55	0.23
Arsenic	3	2	67%	0.0032	0.0049	0.00
Barium	3	3	100%	0.12	0.13	0.13
Beryllium	3	-	0%			0.002
Cadmium	3		0%		'	0.003
Calcium	3	3	100%	521	53	53
Chromium	3		0%			0.01
Cobalt] 3		0%			0.01
Copper] 3	3	100%	0.0016	0.012	0.01
Cyanide, Total	3 }		0%			0.01
Iron	3	3	100%	0.5	1	0.68
Lead	3	2	67%	0.0022	0.0037	0.003
Magnesium	3	3	100%	30	33	32
Manganese Mercury	3 3	3	100% 0%	0.082	0.14	0.11 0.0001
Mercury Molybdenum	3	1	33%	0.0028	0.0028	0.004
Nickel	3	3	100%	0.0028	0.0028	0.004
Potassium] 3	3	100%	6.4	6.9	6.60
Selenium	3	•	100%	• • •	0.5	0.01
Silver	3		0%			0.01
Sodium] 3	3	100%	21	22	21
Thallium	3	-	0%			0.01
Vanadium] 3	1	33%	0.003	0.003	0.004
Zinc	3	3	100%	0.0073	0.075	0.04
Fluoride (mg/l)	3	3	100%	0.24	0.27	0.25
Hardness as CaCO3 (mg/l)	3	3	100%	260	270	263
Ortho-Phosphate-P (mg/l)	3	3	100%	0.063	0.12	0.09
PH Supported Solide (mg/l)	3 3	3	100%	7.4 8	8.6	7.87
Suspended Solids (mg/l) Total Dissolved Solids (mg/l)	3 3	3	67% 100%	330	12 360	7.50 347
Total Phosphorus (mg/l)	3	3	100%	0.13	0.18	0.15
· Call · Hoophords (g.)	- I		100 70	0.10	00	0.10
PCB, ug/l						
Decachlorobiphenyl (ug/l)	3		0%			0.25
Dichlorobiphenyl	3		0%			0.05
Heptachlorobiphenyl	3 [ĺ	0%	i		0.15
lexachlorobiphenyl	3 [0%[i		0.10
Monochlorobiphenyl	3		0%			0.05
Nonachlorobiphenyl	3		0%		l	0.25
Octachlorobiphenyl	3	l	0%			0.15
Pentachlorobiphenyl Tetrachlorobiphenyl	3 3		0% 0%	ļ		0.10 0.10
richlorobiphenyl	3		0%	Į.		0.10
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•					4.55
Pesticides, ug/l						
I,4'-DDD	3		0%	į		0.05
1,4'-DDE	3		0%	i		0.05
1,4'-DDT	3	ļ	0%			0.05
Aldrin	3	ł	0%	1	i	0.03
Alpha Chlordane	3	ļ	0%	ŀ		0.03
alpha-BHC	3		0%			0.02
Deta-BHC delta-BHC	3 3	ŀ	0%	l		0.01 0.01
Jeldrin	3		0% 0%	İ		0.01
Endosulfan I	3	ĺ	0%	ſ		0.03
Endosulfan II	3	ſ	0%	i		0.05
Endosulfan sulfate	3	ì	0%			0.05
Endrin	3	Į	0%	!		0.05
ndrin aldehyde	3		0%1		+	0.05
Endrin ketone	3	1	0%			0.05
Samma Chlordane	3		0%			0.03
amma-BHC (Lindane)	3	ľ	0%		į	0.01
leptachlor	3	J	0%			0.03
deptachlor epoxide	3		0%			0.03
Methoxychlor	3	j	0%			0.25
Toxaphene	3	ļ	0%			2.50

Appendix C-1 Dead Creek Sector F Surface Water Data Summary Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
SVOCs, ug/l					·	
1,2,4-Trichlorobenzene	3		0%			5.00
1,2-Dichlorobenzene	3		0%			5.00
1,3-Dichlorobenzene] 3		0%			5.00
1,4-Dichlorobenzene	3		0%			5.00
2,2'-Oxybis(1-Chloropropane)	3		0%			5.00
2,4,5-Trichlorophenol	3		0%			5.00
2,4,6-Trichlorophenol	3		0%			1.05
2,4-Dichlorophenol] 3		0%			5.00
2,4-Dinitrophenol] 3		0%			7.00
2,4-Dinitrotoluene	3		0%			5.00
2,6-Dinitrotoluene	3		0%			5.00
2-Chloronaphthalene	3		0%			5.00
2-Chlorophenol	3		0%			5.00
2-Methylnaphthaiene	3 (0%			5.00
2-Methylphenol (o-cresol)	3		0%	1		5.00
2-Nitroaniline	3		0%	i		25
2-Nitrophenol	3		0%			5.00
3,3'-Dichlorobenzidine	3		0%			10
3-Methylphenol/4-Methylphenol	3		0%			5.00
3-Nitroaniline	3		0%			25
4,6-Dinitro-2-methylphenol	3		0%			6.50
4-Bromophenylphenyl ether	3		0%	-		0.50
4-Chloro-3-methylphenol	3		0%			5.00
4-Chloroaniline	3		0%			10
I-Chlorophenylphenyl ether	3		0%	l		5.00
I-Nitroaniline	3		0%			25
I-Nitrophenol	3		0%			25
Acenaphthene	3		0%			5.00
Acenaphthylene	3		0%			5.00
Anthracene	3		0%			5.00
Benzo(a)anthracene	3		0%			5.00
Benzo(a)pyrene	3		0%			5.00
Benzo(b)fluoranthene	3		0%			5.00
Benzo(g,h,i)perylene	3		0%			5.00
	3			- {	l	
Benzo(k)fluoranthene			0%			5.00
ois(2-Chloroethoxy)methane	3		0%			5.00
ois(2-Chloroethyl)ether	3		0%		l	5.00
is(2-Ethylhexyl)phthalate	3		0%		1	0.90
Butylbenzylphthalate	3	1	0%			5.00
Carbazole	3		0%			5.00
Chrysene	3 [1	0%	ľ		5.00
Di-n-butylphthalate	3		0%	1		5.00
Di-n-octylphthalate	3		0%	1		5.00
Dibenzo(a,h)anthracene	3		0%	l		5.00
Dibenzofuran	3		0%			5.00
Diethylphthalate	3		0%	!		5.00
Dimethylphthalate	3		0%			5.00
luoranthene	3	1	33%	0.7	0.7	3.57
luorene	3	'	0%	0.7	0.7	0.50
lexachlorobenzene	3	ľ	0%	ı		
				ľ		5.00
lexachlorobutadiene	3		0%			5.00
lexachlorocyclopentadiene	3		0%			5.00
lexachloroethane	3	1	0%			0.95
ndeno(1,2,3-cd)pyrene	3		0%		Į.	5.00
sophorone	3	I	0%			5.00
I-Nitroso-di-n-propylamine	3		0%			5.00
I-Nitrosodiphenylamine	3		0%			2.50
laphthalene	3		0%			5.00
litrobenzene	3	1	0%			1.75
entachlorophenol	3	1	0%			2.50
henanthrene	3	1	33%	0.7	0.7	3.57
Phenol	3		0%	0.,	ا ۰۰۰۱	5.00
yrene	3		0%			5.00
otal PAHs	3	- 1		ا ہ	ا ہ	
			33%	0.7	0.7	3.6
OCs, ug/l	اہ	l		ļ	1	
,1,1-Trichloroethane	3	l	0%	Į.		2.5
,1,2,2-Tetrachloroethane	3	i	0%	I	Į	2.5
,1,2-Trichloroethane	3	f	0%	ſ	í	2.5
,1-Dichloroethane	3	l	0%	ı	1	2.5
,1-Dichloroethene	3	l	0%]	I	l	2.5
,2-Dichloroethane	3	l	0%		1	2.5
2-Dichloropropane	3		0%		1	2.5
-Butanone (MEK)	3	l	0%		l	12.5
-Hexanone	3	l	0%	l	l	12.5
-Methyl-2-pentanone (MIBK)	3		0%	i	Į.	12.5
cetone	3	l	0%		1	
		اد		ا ـ .	l	25
enzene	3	1	33%	1.7	1.7	0.967
romodichloromethane	3	l	0%	J		2.5
romoform	3	l	0%	1	ļ	2.5
romomethane (Methyl bromide)	3	l	0%	ļ	j	4.9
arbon disulfide	3	l	0%	j	1	2.5
arbon tetrachloride	3		0%	i	l	2.5
hiorobenzene	3	1	0%	J	I	2.5

Appendix C-1

Dead Creek Sector F Surface Water Data Summary Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Chloroform	3		0%			2.5
Chloromethane	3		0%			5
cis-1,3-Dichloropropene	3		0%			0.5
Cis/Trans-1,2-Dichloroethene	3		0%			2.5
Dibromochloromethane	3		0%			2.5
Ethylbenzene	3		0%			2.5
Methylene chloride	3		0%			2.35
Styrene	3		0%			2.5
Tetrachioroethene	3 [0%[2.5
Toluene	3		0%			2.5
trans-1,3-Dichloropropene	3		0%			2.5
Trichloroethene	3		0%			1.35
Vinyl chloride	3		0%			5
Xylenes, Total	1 3		0%			2.5

Dioxin Surface Water Data Summary for Dead Creek Sector F Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
 Dioxins and Furans, ug/	1					
1,2,3,4,6,7,8,9-OCDD	3	2	67%	0.000573	0.000617	0.000424333
1,2,3,4,6,7,8,9-OCDF	3	3	100%	0.0000817	0.00026	0.000190567
1,2,3,4,6,7,8-HpCDD	3	2	67%	0.0000629	0.0000692	4.70833E-05
1,2,3,4,6,7,8-HpCDF	3	3	100%	0.0000134	0.0000505	3.63333E-05
1,2,3,4,7,8,9-HpCDF	3	1	33%	0.000548	0.000548	0.00018415
1,2,3,4,7,8-HxCDD	3		0%			2.11667E-06
1,2,3,4,7,8-HxCDF	3	1	33%	0.000024	0.000024	8.98333E-06
1,2,3,6,7,8-HxCDD	3		0%			1.98333E-06
1,2,3,6,7,8-HxCDF	3)	1	33%	0.0000089	0.0000089	3.88333E-06
1,2,3,7,8,9-HxCDD	3		0%			2.06667E-06
1,2,3,7,8,9-HxCDF	3		0%			1.88333E-06
1,2,3,7,8-PeCDD	3		0%			3.13333E-06
1,2,3,7,8-PeCDF	3		0%			0.0000018
2,3,4,6,7,8-HxCDF	3		0%			1.68333E-06
2,3,4,7,8-PeCDF	3		0%			0.0000019
2,3,7,8-TCDD	3		0%			0.0000026
2,3,7,8-TCDF	3		0%			1.96667E-06
Total HpCDD	3	2	67%	0.000127	0.000128	0.0000913
Total HpCDF	3	2	67%	0.000182	0.0006	
Total HxCDD	3	1	33%	0.0000902	0.0000902	
Total HxCDF	3	2	67%	0.0000249	0.000581	0.00020405
Total PeCDD	3		0%			3.13333E-06
Total PeCDF	3		0%			0.00000185
Total TCDD	3		0%	ĺ		0.0000026
Total TCDF	3		0%			1.96667E-06

Appendix C-1 Borrow Pit Lake Surface Water Data Summary Sauget Area I

		- Jauge	T Alba I			
	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
Herbicides, ug/l	1					
2,4,5-T (ug/l)	3		0%			0.25
2,4,5-TP (Silvex)	3		0%			0.25
2,4-D	3		0%			0.25
2,4-DB	3		0%			0.25
Dalapon	3		0%			60
Dicamba	3		0%			0.60
Dichloroprop	3		0%		Ì	3.00
Dinoseb	3		0%			3.00
MCPA	3		0%			60
MCPP	3		0%			60
Pentachlorophenol	1 3		0%			0.50
Metals, mg/l				_		
Aluminum	3	3	100%	0.65	3.4	1.59
Antimony	3		0%			0.01
Arsenic	3	3	100%	0.0079	0.015	0.01
Barium	3	3	100%	0.045	0.32	0.16
Beryllium	3	•	0%	0.045	0.02	0.002
Cadmium	3		0%			0.003
Calcium	3	3	100%	47	89	64
Chromium	3	1	33%	0.0041	0.0041	0.005
Cobalt	3	i	33%	0.0041	0.0041	0.003
Copper	3	3	100%	0.0015	0.0013	0.004
Cyanide, Total	3	3	0%	0.0036	0.0074	0.01
		ا م			احم	
Iron	3	3	100%	1.3	8.7	3.87
Lead	3	3	100%	0.002	0.02	0.01
Magnesium	3	3	100%	26	31	29
Manganese	3	3	100%	0.13	1.7	0.67
Mercury	3	_	0%			0.000
Molybdenum	3	2	67%	0.0035	0.004	0.004
Nickel	3	3	100%	0.0077	0.015	0.01
Potassium	3	3	100%	5.1	7.6	6.57
Selenium] 3		0%			0.01
Silver	3		0%			0.01
Sodium	3	3	100%	21	24	22
Thallium	3		0%			0.01
Vanadium	3	3	100%	0.0051	0.014	0.01
Zinc	3	3	100%	0.017	0.048	0.03
Fluoride (mg/l)] 3	3	100%	0.25	0.29	0.26
Hardness as CaCO3 (mg/l)	3	3	100%	220	350	280
Ortho-Phosphate-P (mg/l)	3	3	100%	0.2	0.83	0.42
pH	3	3	100%	8.5	9.7	9.07
Suspended Solids (mg/l)	3	3	100%	37	160	84
Total Dissolved Solids (mg/l)	3	3	100%	280	480	370
Total Phosphorus (mg/l)	3	3	100%	0.26	1.2	0.59
		_				
PCBs, ug/l						
Decachlorobiphenyl (ug/l)	3		0%			0.25
Dichlorobiphenyl	3		0%		ļ	0.05
Heptachlorobiphenyl	3	}	0%		Į	0.15
Hexachlorobiphenyl	3		0%			0.10
Monochlorobiphenyl	3		0%	1		0.05
Nonachlorobiphenyl	3		0%		İ	0.25
Octachlorobiphenyl	3	İ	0%		ļ	0.15
Pentachlorobiphenyl	3	J	0%	J	j	0.10
Tetrachlorobiphenyl	3	1	0%			0.10
Trichlorobiphenyl	3		0%		ļ	0.05
		j	ا%'			0.03
Pesticides, ug/l						
4,4'-DDD	3	ļ	0%	j.	ļ	0.05
4,4'-DDE	3	[0%	ſ	ſ	0.05
4.4'-DDT	3	l	0%	1		0.05
Aldrin	3		0%	l	l	0.03
Alpha Chlordane	3	ļ		!		
		اہ	0%	0.0004-		0.03
alpha-BHC	3	2	67%	0.00047	0.001	0.01
peta-BHC	3	3	100%	0.0096	0.02	0.01
delta-BHC	3	2	67%	0.00013	0.0022	0.00
Dieldrin	3	1	33%	0.001	0.001	0.03
Endosulfan I	3	2	67%	0.0015	0.0024	0.01
Endosulfan II	3	ł	0%	ł	ł	0.05
Endosulfan sulfate	3	1	33%	0.0032	0.0032	0.03

Borrow Pit Lake Surface Water Data Summary Sauget Area I

		Sauge	et Area I			
	Number	Number	Fraguency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Frequency of Detection	Detected	Detected	Average Concentration
Endrin	3	1	33%	0.00095	0.00095	0.03
Endrin aldehyde	3	2	67%	0.0016	0.0032	0.02
Endrin ketone	3	1	33%	0.0027	0.0027	0.03
Gamma Chlordane	. 3		0%			0.03
gamma-BHC (Lindane)	3	2	67%	0.0024	0.0038	0.01
Heptachlor	3	3	100%	0.0022	0.0029	0.003
Heptachlor epoxide	3	2	67%	0.0009	0.00096	0.01
Methoxychlor	3		0%	i		0.25
Toxaphene	3		0%			2.50
SVOCs, ug/l	-					
1,2,4-Trichlorobenzene	3		0%	i		5.00
1,2-Dichlorobenzene	3		0%			5.00
1,3-Dichlorobenzene	3		0%			5.00
1,4-Dichlorobenzene	3		0%			5.00
2,2'-Oxybis(1-Chloropropane)	3		0%			5.00
2,4,5-Trichlorophenol] 3		0%	j		5.00
2,4,6-Trichlorophenol] 3 [0%			1.05
2,4-Dichlorophenol	3		0%			5.00
2,4-Dinitrophenol	3		0%			7.00
2,4-Dinitrotoluene] 3		0%			5.00
2,6-Dinitrotoluene	3		0%			5.00
2-Chloronaphthalene	3		0%			5.00
2-Chlorophenol	3		0%			5.00
2-Methylnaphthalene	3		0%			5.00
2-Methylphenol (o-cresol)	3		0%			5.00
2-Nitroaniline	3		0%			25
2-Nitrophenol] 3 [0%	1		5.00
3,3'-Dichlorobenzidine] 3	j	0%	j	ļ	10
3-Methylphenol/4-Methylphenol	3	1	0%			5.00
3-Nitroaniline	3		0%	ŀ		25
4,6-Dinitro-2-methylphenol	3 (0%			6.50
4-Bromophenylphenyl ether	3		0%			0.50
4-Chloro-3-methylphenol	3		0%			5.00
4-Chloroaniline	3		0%			10
4-Chlorophenylphenyl ether	3		0%			5.00
4-Nitroaniline	3		0%			25
4-Nitrophenol	3		0%			25
Acenaphthene	3		0%			5.00
Acenaphthylene	3		0%			5.00
Anthracene	3		0%]		5.00
Benzo(a)anthracene	3		0%	i		5.00
Benzo(a)pyrene	3		0%			5.00
Benzo(b)fluoranthene	3		0%			5.00
Benzo(g,h,i)perylene	3	j	0%		1	5.00
Benzo(k)fluoranthene	3		0%		i	5.00
bis(2-Chloroethoxy)methane	3	İ	0%			5.00
bis(2-Chloroethyl)ether	3	ı	0%			5.00
bis(2-Ethylhexyl)phthalate	3	,	0%	ļ		0.90
Butylbenzylphthalate	3	1	0%	į		5.00
Carbazole	3	ļ	0%	i	ļ	5.00
Chrysene Din but debth alate	3	ļ	0%			5.00
Di-n-butylphthalate	3	ļ	0%		ļ	5.00
Di-n-octylphthalate	3	į	0%	l		5.00
Dibenzo(a,h)anthracene	3	1	0%	j		5.00
Dibenzofuran	3	į	0%	l		5.00
Diethylphthalate	3	}	0%	ł	l	5.00
Dimethylphthalate	3]	1	0%	ŀ		5.00
Fluoranthene	3	İ	0%	Ì		5.00
Fluorene	3	1	0%			0.50
Hexachlorobenzene	3	l	0%	1		5.00
dexachlorobutadiene	3		0%		Į	5.00 5.00
Hexachlorocyclopentadiene	3		0%	j	i	5.00
Hexachloroethane	3		0%			0.95
ndeno(1,2,3-cd)pyrene	3	J	0%	J	J	5.00
sophorone	3	l	0%	I	ŀ	5.00
N-Nitroso-di-n-propylamine	3		0%	I	Ì	5.00
I-Nitrosodiphenylamine	3	l	0%	I	1	2.50
iaphthalene	3	l	0%	ļ	I	5.00
litrobenzene	3	l	0%	I		1.75
Pentachlorophenol	3	1	0%			2.50
Phenanthrene	3	f	0%	i		5.00
Phenol	3	İ	0%		ļ	5.00
Pyrene	3		0%			5.00

Appendix C-1

Borrow Pit Lake Surface Water Data Summary
Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
VOCs, ug/l	- //200	Detected	Detection	Detected	Detected	Concentration
1,1,1-Trichloroethane	3		0%			2.5
1,1,2,2-Tetrachloroethane	3		0%			2.5
1,1,2-Trichloroethane	3		0%			2.5
1,1-Dichloroethane	3		0%			2.5
1.1-Dichloroethene	3		0%			2.5
1,2-Dichloroethane	3		0%		•	2.5
1,2-Dichloropropane	3		0%			2.5
2-Butanone (MEK)	3		0%			12.5
2-Hexanone	3	1	0%			12.5
4-Methyl-2-pentanone (MIBK)	3		0%			12.5
Acetone	3	3	100%	13	18	15
Benzene	3	_	0%			0.6
Bromodichloromethane	3		0%			2.5
Bromoform	3		0%			2.5
Bromomethane (Methyl bromide)	3		0%			4.9
Carbon disulfide	3		0%			2.5
Carbon tetrachloride	3		0%			2.5
Chlorobenzene	3		0%			2.5
Chloroethane	3		0%			5
Chloroform	3		0%			2.5
Chloromethane	3		0%			5
cis-1,3-Dichloropropene	3		0%			0.5
Cis/Trans-1,2-Dichloroethene	3		0%			2.5
Dibromochloromethane	3		0%			2.5
Ethylbenzene	3		0%	ļ		2.5
Methylene chloride	3		0%			2.35
Styrene	3		0%			2.5
Tetrachloroethene	3		0%			2.5
Toluene	3	ļ	0%	ļ		2.5
rans-1,3-Dichloropropene	3		0%			2.5
Trichloroethene	3		0%			1.35
Vinyl chloride	3		0%	ļ		5
Xylenes, Total	3		0%			2.5

Appendix C-1

Dioxin Surface Water Summary Statistics Borrow Pit Lake
Sauget Area I

			1			<u> </u>
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Dioxins and Furans, ug/						
1,2,3,4,6,7,8,9-OCDD	3	3	100%	0.000751	0.00143	0.000991
1,2,3,4,6,7,8,9-OCDF	3	2	67%	0.0000503	0.000071	0.0000505
1,2,3,4,6,7,8-HpCDD	3	2	67%	0.0000442	0.0000569	0.0000412
1,2,3,4,6,7,8-HpCDF	3	3	100%	0.0000144	0.0000217	0.000018
1,2,3,4,7,8,9-HpCDF	3		0%			4.83333E-06
1,2,3,4,7,8-HxCDD	3		0%			0.00000335
1,2,3,4,7,8-HxCDF	3		0%			3.11667E-06
1,2,3,6,7,8-HxCDD	3		0%			3.13333E-06
1,2,3,6,7,8-HxCDF	3		0%	}		0.0000029
1,2,3,7,8,9-HxCDD	3		0%			0.00000325
1,2,3,7,8,9-HxCDF	3		0%			0.00000345
1,2,3,7,8-PeCDD	3		0%			0.00000325
1,2,3,7,8-PeCDF	3		0%			2.28333E-06
2,3,4,6,7,8-HxCDF	3		0%			3.06667E-06
2,3,4,7,8-PeCDF	3		0%			0.0000024
2,3,7,8-TCDD	3		0%	}		3.31667E-06
2,3,7,8-TCDF	3		0%			3.06667E-06
Total HpCDD	3	2	67%	0.0000935	0.000122	9.01667E-05
Total HpCDF	3	3	100%	0.0000416	0.0000551	0.0000476
Total HxCDD	3	1	33%	0.0000062	0.0000062	4.43333E-06
Total HxCDF	3		0%			3.11667E-06
Total PeCDD	3		0%			0.00000325
Total PeCDF	3		0%			0.00000235
Total TCDD	3		0%			3.31667E-06
Total TCDF	3		0%	_ 1		3.06667E-06

Appendix C-1 Reference Area Surface Water Data Summary Sauget Area I

	Normhan	Norma	5	Minimum	Mandan	4
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Detected	Maximum Detected	Average Concentration
Herbicides, ug/l						
2,4,5-T	4 1		0%			0.25
2,4,5-TP (Silvex)	4		0%			0.25
2,4-D 2,4-DB	4		0% 0%			0.25 0.25
Dalapon	4		0%			60
Dicamba	4		0%			0.60
Dichloroprop	1 4		0%			3.00
Dinoseb	4		0%			3.00
MCPA	4		0%		:	60
MCPP	4		0%			60
Pentachlorophenol	4		0%			0.50
Metals, mg/l	ا ما	4	4000/		40.5	40
Aluminum Antimony	4 4	4	100%	9.4	19.5	13 0.01
Arsenic	4	4	100%	0.0093	0.017	0.01
Barium	4	4	100%	0.0093	0.017	0.36
Beryllium	1 4	2	50%	0.000665	0.00083	0.001
Cadmium	1 4	-	0%	0.00000	0.0000	0.003
Calcium	4	4	100%	50	72	59
Chromium	4	4	100%	0.011	0.0225	0.02
Cobalt	4	4	100%	0.0047	0.0076	0.01
Copper	4	4	100%	0.0097	0.0185	0.01
Cyanide, Total	4		0%	i		0.01
Iron	4	4	100%	11	25.5	16
Lead	4	4	100%	0.02	0.032	0.03
Magnesium	4	4	100%	23	35	27
Manganese	4 4	4	100%	1.5	2.9	1.98 0.0001
Mercury Molybdenum	4	4	0% 100%	0.0032	0.00655	0.0001
Nickel	4	4	100%	0.0032	0.0245	0.01
Potassium	4	4	100%	0.010	11	8.50
Selenium	انًا	•	0%	·		0.01
Silver	4		0%			0.01
Sodium	4	4	100%	16	23	19
Thallium	4		0%			0.01
Vanadium	4	4	100%	0.031	0.0525	0.04
Zinc	4 [4 [100%	0.042	0.13	0.08
Fluoride (mg/l)	4	4	100%	0.23	0.38	0.31
Hardness as CaCO3 (mg/l)	4	4	100%	220	330	256
Ortho-Phosphate-P (mg/l) pH	4 4	3 4	75% 100%	0.089 7.3	0.215 8.1	0.12 7.83
pn Suspended Solids (mg/l)	4	4	100%	270	700	420
Total Dissolved Solids (mg/l)	4	4	100%	310	460	368
Total Phosphorus (mg/l)	4	4	100%	0.87	3	1.64
PCB, ug/l						
Decachlorobiphenyl	4		0%			0.25
Dichlorobiphenyl	4		0%			0.05
Heptachlorobiphenyl	4		0%	ļ		0.15
Hexachlorobiphenyl	4		0%			0.10
Monochlorobiphenyl	4		0%	ľ		0.05
Nonachlorobiphenyl	4		0%			0.25
Octachlorobiphenyl	4		0%	ļ		0.15
Pentachlorobiphenyl	4		0%		ï	0.10
Tetrachlorobiphenyl	4		0%			0.10
Trichlorobiphenyl	4	1	0%	ł		0.05
Pesticides, ug/l	4		0%			0.05
4,4'-DDE	4	1	25%	0.0015	0.0015	0.04
4,4'-DDT	4	1	25%	0.0057	0.0057	0.04
Aldrin	4	2	50%	0.0024	0.004	0.01
Alpha Chlordane	4	2	50%	0.0019	0.013	0.02
alpha-BHC	4	1	25%	0.00155	0.00155	0.02
Deta-BHC	4	4	100%	0.0048	0.015	0.01
delta-BHC	4	1	25%	0.007	0.007	0.01
Dieldrin Endosulfan I	4 4	2	50%	0.0021	0.0036	0.03 0.01
Endosulfan II	4 4	4 1	100% 25%	0.0017 0.000096	0.026 0.000096	0.01
	4	3	75%	0.00098	0.000098	0.04
Endosulfan sulfate						

Reference Area Surface Water Data Summary Sauget Area I

		Sauge	et Area I			
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Endrin aldehyde	4	1	25%	0.05115	0.05115	0.05
Endrin ketone	4	2	50%	0.0047	0.011	0.03
Gamma Chlordane	4	2	50%	0.00082	0.0031	0.01
gamma-BHC (Lindane)	4	4	100%	0.001	0.01155	0.01
Heptachlor	4	1	25%	0.0035	0.0035	0.02
Heptachlor epoxide	4	4	100%	0.0047	0.0082	0.01
Methoxychlor	4		0%			0.25
Toxaphene	4		0%[2.50
SVOCs, ug/l			1			
1,2,4-Trichlorobenzene	4		0%			5.00
1,2-Dichlorobenzene	4		0%			5.00
1,3-Dichlorobenzene	4		0%			5.00
1,4-Dichlorobenzene	4		0%			5.00
2.2'-Oxybis(1-Chloropropane)	4		0%			5.00
2,4,5-Trichlorophenol	1 41		0%	ĺ	ĺ	5.00
2,4,6-Trichlorophenol 2,4-Dichlorophenol	4 4		0%			1.05
2,4-Dinitrophenol	4		0%			5.00
2.4-Dinitrotoluene	1 4		0%			7.00
2,6-Dinitrotoluene	1 4	l	0%	Į.		5.00
2-Chloronaphthalene	1 41	ļ	0% 0%	I		5.00
2-Chlorophenol	4	j	0%	I		5.00
2-Methylnaphthalene	4	J	0%	I		5.00
2-Methylphenol (o-cresol)	1 4	1	0%	í	ľ	5.00 5.00
2-Nitroaniline	4		0%	1		
2-Nitrophenol	1 4		0%	1		25 5.00
3,3'-Dichlorobenzidine	4		0%			10
3-Methylphenol/4-Methylphenol	1 4	i	0%			5.00
3-Nitroaniline	[4]		0%			25
4,6-Dinitro-2-methylphenol	4	- 1	0%			6.50
4-Bromophenylphenyl ether	4		0%			0.50
4-Chloro-3-methylphenol	1 41	ŀ	0%		1	5.00
4-Chloroaniline	1 4		0%			10
4-Chlorophenylphenyl ether	1 4		0%			5.00
4-Nitroaniline	4	l	0%	ļ		25
4-Nitrophenol	4		0%	i		25
Acenaphthene	4		0%			5.00
Acenaphthylene	4		0%			5.00
Anthracene	4		0%			5.00
Benzo(a)anthracene	4	ł	0%	1	1	5.00
Benzo(a)pyrene	4		0%			5.00
Benzo(b)fluoranthene	4	- 1	0%			5.00
Benzo(g,h,i)perylene	4 [0%	1	1	5.00
Benzo(k)fluoranthene	4	- 1	0%			5.00
bis(2-Chloroethoxy)methane	4		0%			5.00
bis(2-Chloroethyl)ether	4		0%	ļ		5.00
bis(2-Ethylhexyl)phthalate	4		0%	ŀ		0.90
Butylbenzylphthalate	4	}	0%	ŀ	1	5.00
Carbazole	4		0%			5.00
Chrysene	4		0%			5.00
Di-n-butylphthalate	4		0%	ļ	}	5.00
Di-n-octylphthalate	4	1	0%			5.00
Dibenzo(a,h)anthracene Dibenzofuran	4	ì	0%	ł		5.00
	4		0%		j	5.00
Diethylphthalate	4		0%	1	1	5.00
Dimethylphthalate Fluoranthene	4	1	0%	į	I	5.00
Fluoranmene	4	J	0%		1	5.00
Hexachlorobenzene	4	}	0%		1	0.50
Hexachlorobutadiene	4		0%		ŀ	5.00
l l	4	l	0%		[5.00
Hexachlorocyclopentadiene Hexachloroethane	4	l	0%		i	5.00
Indeno(1,2,3-cd)pyrene	4	l	0%		1	0.95
Indeno(1,2,3-cd)pyrene Isophorone	4	- 1	0%		ŀ	5.00
N-Nitroso-di-n-propylamine	4	j	0%	j	1	5.00
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	4 4	[0%		l	5.00
Naphthalene			0%		l	2.50
Napnthalene Nitrobenzene	4		0%		l	5.00
Pentachlorophenol	4		0%		l	1.75
Phenanthrene	4		0%		l	2.50
Phenol	4 4		0%		ŀ	5.00
Pyrene	4	ļ	0%		ŀ	5.00
ı yıcııc	41		0%			5.00

Reference Area Surface Water Data Summary Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
VOCs, ug/l						
1,1,1-Trichloroethane	4		0%			2.5
1,1,2,2-Tetrachloroethane	1 4		0%			2.5
1,1,2-Trichloroethane	4		0%			2.5
1,1-Dichloroethane	4		0%			2.5
1,1-Dichloroethene	4		0%			2.5
1,2-Dichloroethane	4		0%			2.5
1,2-Dichloropropane	4		0%			2.5
2-Butanone (MEK)] 4]		0%			12.5
2-Hexanone	4		0%			12.5
4-Methyl-2-pentanone (MIBK)	4		0%		i i	12.5
Acetone	4	1	25%	38	38	28
Benzene	4		0%			0.6
Bromodichloromethane	4		0%			2.5
Bromoform	4		0%			2.5
Bromomethane (Methyl bromide)	[4 [0%	[4.9
Carbon disulfide	4		0%			2.5
Carbon tetrachloride	4		0%			2.5
Chlorobenzene	4		0%	i		2.5
Chloroethane	4		0%			5
Chloroform	4		0%			2.5
Chloromethane	4		0%	ľ	' I	5
cis-1,3-Dichloropropene	4		0%			0.5
Cis/Trans-1,2-Dichloroethene	4		0%			2.5
Dibromochloromethane	4		0%	1		2.5
Ethylbenzene	4		0%			2.5
Methylene chloride	4		0%		ľ	2.35
Styrene	4		0%	ľ		2.5
Tetrachloroethene	4		0%	1		2.5
Toluene	4 [0%	İ		2.5
trans-1,3-Dichloropropene	4		0%			2.5
Trichloroethene	4		0%			1.35
Vinyl chloride	4	J	0%	J		5
Xylenes, Total	4	}	0%	}	}	2.5

Appendix C-1

Reference Area Surface Water Dioxin Data Summary Statistics
Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Dioxins and Furans, ug/l		1				·
1,2,3,4,6,7,8,9-OCDD	4	4	100%	0.00288	0.0074	0.00475625
1,2,3,4,6,7,8,9-OCDF	4	3	75%	0.00200	0.0001955	
1,2,3,4,6,7,8-HpCDD	7	4	100%	0.000123	0.0001933	
1,2,3,4,6,7,8-HpCDF	7	4	100%	0.0000333	0.000105	
1,2,3,4,7,8,9-HpCDF	7	1	25%	0.0000147	0.0000443	
1,2,3,4,7,8-HxCDD	4	2	50%	0.0000575	0.00000113	
1,2,3,4,7,8-HxCDF	7 1	-	0%	0.00000373	0.00000	0.0000032
1,2,3,6,7,8-HxCDD	41	3	75%	0.000009	0.0000098	
1,2,3,6,7,8-HxCDF	4	2	50%	0.0000053	0.0000072	
1,2,3,7,8,9-HxCDD	4	3	75%	0.0000109	0.0000139	
1,2,3,7,8,9-HxCDF	4	3	75%	0.0000075	0.0000127	0.00000795
1,2,3,7,8-PeCDD	41	2	50%	0.0000083	0.0000087	5.31875E-06
1,2,3,7,8-PeCDF	4	2	50%	0.0000068	0.0000071	4.79375E-06
2,3,4,6,7,8-HxCDF	4	_ [0%			3.38125E-06
2,3,4,7,8-PeCDF	4	1	25%	0.0000059	0.0000059	
2,3,7,8-TCDD	4		0%			1.6125E-06
2,3,7,8-TCDF	4	3	75%	0.0000054	0.00000835	0.0000057
Total HpCDD	4	4	100%	0.000202	0.0004035	0.000326875
Total HpCDF	4	2	50%	0.000081	0.0001515	7.80375E-05
Total HxCDD	4	2	50%	0.0000633	0.00006425	0.0000435
Total HxCDF	4	2	50%	0.0000216	0.0000368	2.86438E-05
Total PeCDD	4	1	25%	0.0000083	0.0000083	5.34375E-06
Total PeCDF	4	2	50%	0.000013	0.00001635	0.0000092
Total TCDD	4	3	75%	0.0000039	0.000017	0.00000735
Total TCDF	4	3	75%	0.0000054	0.000009	5.8625E-06

Appendix C-2 Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency Of Detection	Minimum Detected	Maximum Detected	Average Concentration
Herbicides, ug/kg						
2,4,5-T	6		0%			38
2,4,5-TP (Silvex)	6		0%			38
2,4-D	6	3	50%	8.8	23	38
2,4-DB	6	_	0%	0.0		38
Dalapon	6		0%			304
Dicamba	6		0%			89
Dichloroprop	6		0%			452
Dinoseb	6		0%			452
MCPA	6		0%			8,942
MCPP			0%			8,942
Pentachlorophenol	6 6		0%			64
Inorganics, mg/kg			0.70			
Aluminum	اء	6	100%	7,800	17,000	42 200
	6	6				13,300
Antimony	6	5	83%	1.5	4.7	2.7
Arsenic	6	6	100%	8.0	19	15
Barium	6	6	100%	150	420	287
Beryllium	6	6	100%	0.53	0.89	0.74
Cadmium	6	6	100%	1.6	47	12
Calcium	6	6	100%	11,000	17,000	13,167
Chromium	6	6	100%	18	38	25
Cobalt	6	6	100%	5.5	13	9.4
Copper	6	6	100%	36	410	159
Cyanide, Total	6		0%			0.83
Iron	6	6	100%	14,000	38,000	27,333
Lead	6	6	100%	34	320	114
Magnesium	ő	6	100%	3,600	6,800	5,033
Manganese	6	6	100%	170	1,400	758
Mercury	6	6	100%	0.10	1.1	0.37
Molybdenum			100%	0.10	3.7	
	6	6				1.2
Nickel	6	6	100%	35	390	134
Potassium	6	6	100%	1,500	2,900	2,183
Selenium	6		0%			1.6
Silver	6	1]	17%	0.79	0.79	1.5
Sodium	6		0%			113
Thallium	6		0%			1.6
Vanadium	6	6	100%	25	51	37
Zinc	6	6	100%	250	3,700	1,197
рН	6	6	100%	6.7	7.06	6.9
Total Organic Carbon (mg/kg dry weight)	6	6	100%_	33,000	140,000	64,333
PCBs, ug/kg						
Decachlorobiphenyl	6		0%			56
Dichlorobiphenyl	6		0%			11
Heptachlorobiphenyl	6]		0%			33
Hexachlorobiphenyl	6	2	33%	17	22	25
Monochlorobiphenyl	6		0%			11
Nonachlorobiphenyl	6		0%			56
Octachlorobiphenyl	6		0%			33
Pentachlorobiphenyl	6	2	33%	61	66	39
Tetrachlorobiphenyl	6	2	0%			22
Trichlorobiphenyl	6		0%			11
Tichlorobiphenyi	6	2	33%	83	83	46
Pesticides, ug/kg			33 /8			
4,4'-DDD	اء	4	470/	2.0	20	9.8
	6	1	17%	3.8	3.8	
4,4'-DDE	6	6	100%	1.1	11	4.6
4,4'-DDT	6	3	50%	1.1	4.5	7.7
Total DDT	6	6	100%	9.2	43	22
Aldrin	6	1	17%	4.1	4.1	5.4
Alpha Chlordane	6	6	100%	0.48	5.3	2.6
alpha-BHC	6		0%			1.6
beta-BHC	6		0%			1.6
delta-BHC	6	1	17%	0.34	0.34	1.5

Appendix C-2
Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake
Sauget Area I

	Compounds	Number Analyzed	Number Detected	Frequency Of Detection	Minimum Detected	Maximum Detected	Averag Concentration
	Dieldrin	6	4	67%	0.26	9.3	6.3
[Endosulfan I	6	6	100%	1.0	5.7	2.9
İ	Endosulfan II	6	3	50%	1.8	8.1	6.8
	Endosulfan sulfate	6	3	50%	1.4	9.5	8.7
	Endrin	6	2	33%	1.7	1.7	7.7
	Endrin aldehyde	6	6	100%	1.2	14	5.2
	Endrin ketone	6	4	67%	0.7	10	6.7
·	Gamma Chlordane	ő	5	83%	0.74	17	5.9
	gamma-BHC (Lindane)	6	1	17%	4.8	4.8	5.6
					0.93		
	Heptachlor	6	1	17%		0.93	4.5
l	Heptachlor epoxide	6	3	50%	0.51	5.4	4.9
	Methoxychlor	6	3	50%	7.3	24	30
	Ioxaphene	6		0%			535
	SVOCs, ug/kg						
ŀ	1,2,4-Trichlorobenzene	6		0%		'	279
	1,2-Dichlorobenzene	6		0%			279
	1,3-Dichlorobenzene	6		0%			279
1	1,4-Dichlorobenzene	6		0%			279
1	2,2'-Oxybis(1-Chloropropane)	6		0%			279
	2,4,5-Trichlorophenol	6		0%			279
	2,4,6-Trichlorophenol	6	1	0%			279
	2,4-Dichlorophenol	6		0%			279
	2,4-Digitiorophenol	6		0%			
							1,400
-	2,4-Dinitrotoluene	6		0%			279
	2,6-Dinitrotoluene	6		0%			279
	2-Chloronaphthalene	6		0%			279
	2-Chlorophenol	6		0%			279
	2-Methylnaphthalene	6		0%			
	2-Methylphenol (o-cresol)	6		0%			
	2-Nitroaniline	6	ŀ	0%			1,400
	2-Nitrophenol	6		0%			279
	3,3'-Dichlorobenzidine	6		0%			538
	3-Methylphenol/4-Methylphenol	6		0%			279
	3-Nitroaniline	ĕ		0%			1,400
	4,6-Dinitro-2-methylphenol	6		0%			1,400
	4-Bromophenylphenyl ether	6		0%			279
	4-Chloro-3-methylphenol						
		6		0%			279
	4-Chloroaniline	6		0%			538
	4-Chlorophenylphenyl ether	6		0%			279
	4-Nitroaniline	[6		0%			1,400
	4-Nitrophenol	6		0%			1,400
	Acenaphthene	6		0%		1	279
	Acenaphthylene	6		0%			279
	Anthracene	6		0%			279
	Benzo(a)anthracene	6		0%			279
	Benzo(a)pyrene	ě		0%]		148
	Benzo(b)fluoranthene	ĕ		0%			279
	Benzo(g,h,i)perylene	6		0%			279
	Benzo(y,n,n)peryiene						
	Benzo(k)fluoranthene	6		0%			279
	bis(2-Chloroethoxy)methane	6		0%	ĺ		279
	bis(2-Chloroethyl)ether	6		0%			279
	bis(2-Ethylhexyl)phthalate	6	!	0%			279
	Butylbenzylphthalate	6	i	0%			279
	Carbazole	6		0%			279
	Chrysene	6	1	17%	74	74	258
	Di-n-butylphthalate	6		0%			279
	Di-n-octylphthalate	[6		0%	ļ		279
-	Dibenzo(a,h)anthracene	6		0%		'	71.0
	Dibenzoturan	6		0%			
	Diethylphthalate	6					/
	Diethylphthalate	1 01		0% 0%	l		<u>2</u> 79

Appendix C-2
Sediment Summary Statistics for Dead Creek Section F and Borrow Pit Lake
Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency Of Detection	Minimum Detected	Maximum Detected	Average Concentration
Fluoranthene	6	2	33%	120	130	236
Fluorene	6		0%			279
Hexachlorobenzene	6		0%			114
Hexachlorobutadiene	6		0%			279
Hexachlorocyclopentadiene	6		0%			279
Hexachloroethane	6		0%			279
Indeno(1,2,3-cd)pyrene	6		0%			279
Isophorone	6		0%			279
N-Nitroso-di-n-propylamine	6		0%			279
N-Nitrosodiphenylamine	6		0%			279
Naphthalene	6		0%			279
Nitrobenzene	6		0%			279
Pentachlorophenol	6					
			0%			1,400
Phenanthrene	6		0%			279
Phenol	6		0%			279
Pyrene	6	0	0%	400	400	279
Totál PAHs	6	2	33%	120	130	236
VOCs, ug/kg						
1,1,1-Trichloroethane	6		0%			14
1,1,2,2-Tetrachloroethane	6		0%			14
1,1,2-Trichloroethane	6		0%			14
1,1-Dichloroethane	6		0%			14
1,1-Dichloroethene	6		0%			13
1,2-Dichloroethane	6		0%			14
1,2-Dichloropropane	6		0%			14
2-Butanone (MEK)] 6		0%			67
2-Hexanone	6		0%			67
4-Methyl-2-pentanone (MIBK)	6		0%	J		67
Acetone	6		0%			138
Benzene	6		0%	1		14
Bromodichloromethane	6		0%			14
Bromoform	6		0%			14
Bromomethane (Methyl bromide)	6		0%	İ		27
Carbon disulfide	6		0%			14
Carbon tetrachloride	6		0%			14
Chlorobenzene	6		0%			14
Chloroethane	6		0%			27
Chloroform	6		0%			14
Chloromethane	6		0%			27
and the second s	6		0%			11
cis-1,3-Dichloropropene						
Cis/Trans-1,2-Dichloroethene	6		0%			14
Dibromochloromethane	6	4	0%	4.4	4.4	14
Ethylbenzene	6	1	17%	11	11	13
Methylene chloride (Dichloromethane)	6		0%	ľ		14
Styrene	6		0%			14
Tetrachloroethene	6	1	0%	}		14
Toluene	6		0%			14
trans-1,3-Dichloropropene	[6 [0%	i		j 11
Trichloroethene	[6]		0%			14
Vinyl chloride	6		0%			27
Xylénes, Lotal	6		0%			14

Appendix C-2
Site Sediment Dioxin Summary Statistics Creek Sector F and Borrow Pit Lake Sauget Area I

	Number	Number	Freq. Of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concen.
Dioxins and Furans, ug/						
1,2,3,4,6,7,8,9-OCDD	6	6	100%	8.63	88.43	36.0
1,2,3,4,6,7,8,9-OCDF	6	6	100%	0.235	32.61	11.4
1,2,3,4,6,7,8-HpCDD	6	6	100%	0.238	9.44	3.17
1,2,3,4,6,7,8-HpCDF	6	6	100%	0.0548	5.08	1.78
1,2,3,4,7,8,9-HpCDF	6	6	100%	0.006	0.32	0.117
1,2,3,4,7,8-HxCDD	6	5	83%	0.0024	0.0688	0.022
1,2,3,4,7,8-HxCDF	6	6	100%	0.00505	0.162	0.059
1,2,3,6,7,8-HxCDD	6	6	100%	0.00795	0.32	0.110
1,2,3,6,7,8-HxCDF	6	6	100%	0.00295	0.0719	0.026
1,2,3,7,8,9-HxCDD	6	6	100%	0.00975	0.221	0.070
1,2,3,7,8,9-HxCDF	6	6	100%	0.00074	0.0223	0.008
1,2,3,7,8-PeCDD	6	6	100%	0.0021	0.0389	0.014
1,2,3,7,8-PeCDF	6	4	67%	0.0015	0.0124	0.008
2,3,4,6,7,8-HxCDF	6	6	100%	0.0035	0.0899	0.034
2,3,4,7,8-PeCDF	6	6	100%	0.0029	0.0333	0.013
2,3,7,8-TCDD	6	6	100%	0.0009	0.016	0.008
2,3,7,8-TCDF	6	6	100%	0.0062	0.0448	0.019
Total HpCDD	6	6	100%	0.541	17.9	6.11
Total HpCDF	6	5	83%	0.183	21.65	7.50
Total HxCDD	6	1	17%	1.37	1.37	0.592
Total HxCDF	6		0%			0.528
Total PeCDD	6		0%			0.142
Total PeCDF	6		0%			0.120
Total TCDD	6		0%			0.116
Total TCDF	6		0%			0.179

Appendix C-2 Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

	T	I	г			ı.— ——
	Number	Number	Frequency of	Minimum	Maximum	Augraga
Compounds	Analyzed	Detected	Detection	Detected	Detected	Average Concentration
Herbicides, ug/kg						
2,4,5-T (ug/kg)	3	ľ	0%	ĺ		63
2,4,5-TP (Silvex)	3		0%			63
2,4-D	3	1	33%	23	23	60
2,4-DB	3		0%			6
Dalapon	3		0%			51
Dicamba	3		0%			15
Dichloroprop	3		0%			76:
Dinoseb	3		0%			76:
MCPA MCPP	3	l	0%			1506
Pentachiorophenol	3 3		0% 0%			15067 104
Metals, mg/kg	1		. 076			
Aluminum	3	3	100%	7800	17000	12933
Antimony	3	3	100%	2.5	4.7	3.27
Arsenic	3	3	100%	8	19	14
Barium] 3	3	100%	150	270	223
Beryllium] 3	3	100%	0.53	0.89	0.70
Cadmium	3	3	100%	7.4	47	23
Calcium) š	3	190%	11000	13000	11667
Chromium	3	3	100%	19	38	29
Cobalt	3	3	100%	5.5	13	9.83
Copper	3	3	100%	160	410	270
Cyanide, Total	3	•	0%		"	0.95
Iron	3	3	100%	14000	26000	2066
Lead	3	3	100%	110	320	180
Magnesium	3	3	100%	4100	6800	5400
Manganese	3	3	100%	170	510	303
Mercury	3	3	100%	0.3	1.1	0.62
Molybdenum	3]	3	100%	0.7	3.7	1.72
Nickel	3	3	100%	90	390	220
Potassium] 3]	3	100%	1600	2900	2400
Selenium	3		0%			1.80
Silver	3		0%			1.80
Sodium	3	•	0%			132
Thallium	3	_	0%			1.80
Vanadium	3	3	100%	25	51	39
Zinc	3	3	100%	950	3700	2083
pH Total Oceania Coston	3 3	3 3	100%	6.71	6.87	6.81 80333
Total Organic Carbon	ا ا	3	100%	40000	140000	80333
PCB, ug/kg						
Decachlorobiphenyl (ug/kg)	3		0%			73
Dichlorobiphenyl	3		0%			14
Heptachlorobiphenyl	3		0%	}	ł	43
Hexachlorobiphenyl	3	2	67%	17	22	33
Monochlorobiphenyl	3		0%			14
Nonachlorobiphenyl	3		0%		1	73
Octachlorobiphenyl	3		0%	1		43
Pentachlorobiphenyl	3	2	67%	61	66	62
Tetrachlorobiphenyl	3	i	0%	i	ì	29
Trichlorobiphenyl	3		0%			14
	ا _ ا					
Total PCBs	3	2	67%	83	120	
Pesticides, ug/kg	ايا	ا ,			أمم	
4,4'-DDD (ug/kg) 4,4'-DDE	3 3	1 3	33%	3.8 2.5	3.8 11	11 7.20
4,4'-DDT	3 3	1	100% 33%	2.5 4.5	4.5	7.20
4,4*-001 Total DDT	3	3	100%	4.5 19	4.5 43	30
Aldrin	3	1	33%	4.1	4.1	6.37
Alpha Chlordane	3	ġ l	100%	0.84	5.3	3.58
alpha-BHC	3	١	0%	0.04	5.5	1.88
beta-BHC	3		0%			1.88
delta-BHC	j 3 l	1	33%	0.34	0.34	1.61
Dieldrin	3	2	67%	0.99	9.3	9.26
Endosulfan I] 3	3	100%	1.2	5.7	2.97
Endosulfan II	3	3	100%	1.8	8.1	5.13
Endosulfan sulfate	3	1	33%	2.8	2.8	11
Endrin	3	2	67%	1.7	1.7	6.97
Endrin aldehyde	3	3	100%	3.6	14	8.87
Endrin ketone	3	3)	100%	3.8	10	7.00
Gamma Chlordane	3	3	100%	2.4	17	8.97
gamma-BHC (Lindane)	3		0%	l		6.30
Heptachlor	3	1	33%	0.93	0.93	4.61
Heptachlor epoxide	3	2	67%	0.51	5.4	4.9
Methoxychlor	3	3	100%	7.3	24	18
Toxaphene	3		0%			630
SVOCs, ug/kg	_					
1,2,4-Trichlorobenzene	3	l	0%			310
1,2-Dichlorobenzene	3	Ì	0%			310
1,3-Dichlorobenzene	3		0%			311
1,4-Dichlorobenzene 2,2'-Oxybis(1-Chloropropane)	3	ſ	0%	ſ		318 318
2,2-Oxyois(1-Chloropropane) 2,4,5-Trichlorophenol	3		0% 0%	l		318
2,4,5-Trichlorophenol	3	!	0%			318
- TO THOMOTOPHONO						310

Appendix C-2 Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
2,4-Dichlorophenol	3	<u> </u>	0%		-	318
2,4-Dinitrophenol	3]		0%			1600
2,4-Dinitrotoluene	3		0%			318
2,6-Dinitrotoluene	3		0%	1		318
2-Chloronaphthalene	3		0%	Ī		318
2-Chlorophenol	3		0%			318
2-Methylnaphthalene	3		0%			318
2-Methylphenol (o-cresol)	3		0%	ì		316
2-Nitroaniline	3		0%	ļ		1600
2-Nitrophenol	3		0%	l		318
3,3'-Dichlorobenzidine	3		0%	{		612
3-Methylphenol/4-Methylphenol	3		0%			318
3-Nitroaniline	3		0%			1600
4,6-Dinitro-2-methylphenol	3		0%			1600
4-Bromophenylphenyl ether	3		0%			318
4-Chloro-3-methylphenol	3		0%			318
4-Chloroaniline	3		0%			612
4-Chlorophenylphenyl ether	3		0%			318
4-Nitroaniline	3		0%	i i		1600
1-Nitrophenol	3		0%	1		1600
Acenaphthene	3		0%			318
Acenaphthylene	3		0%			318
Anthracene	3		0%			318
Benzo(a)anthracene	3		0%			318
Benzo(a)pyrene	3		0%			
Senzo(b)fluoranthene	3		0%			168
Benzo(g,h,i)perylene	3					318
Senzo(k)fluoranthene	3		0%	i		318
osice-Chloroethoxy)methane	3 3		0%	1		318
ss(2-Chloroethyl)ether			0%	1		318
	3		0%	1		318
pis(2-Ethylhexyl)phthalate	3		0%	Ì		318
Butylbenzylphthalate	3		0%	1		318
Carbazole	3		0%	1		318
hrysene	3	1	33%	74	74	276
Di-n-butylphthalate	3	j	0%			318
Xi-n-octylphthalate	3		0%			318
Dibenzo(a,h)anthracene	3		0%			168
Dibenzofuran	3		0%			318
Diethylphthalate	3		0%	-		318
Dimethylphthalate	3		0%			318
luoranthene	1 3	2	67%	120	130	232
luorene	3		0%			318
lexachlorobenzene	3		0%			132
lexachlorobutadiene	3		0%	1		318
lexachlorocyclopentadiene	3	1	0%	F		318
lexachloroethane	3		0%			318
ndeno(1,2,3-cd)pyrene	3		0%		l	318
sophorone	3		0%			318
l-Nitroso-di-n-propylamine	3	ſ	0%	1	ſ	318
-Nitrosodiphenylamine	3	ł	0%	1		318
aphthalene] 3		0%		1	
itrobenzene	3	j		ŀ		318
entachlorophenol	3 3	1	0%	Ì	I	318
henanthrene		ŀ	0%		I	1600
nenanmene henol	3		0%		I	318
	3	J	0%	J	J	318
yrene	3		0%∫	[I	318
otal PAHs	3	اء				
	3	2	67%	120	130	230
OCs, ug/kg	_			I	Ī	
1,1-Trichloroethane	3		0%	1	l	14
1,2,2-Tetrachloroethane	3		0%		I	14
1,2-Trichloroethane	3		0%	l	J	14
1-Dichloroethane	3	ļ	0%	Į	1	14
1-Dichloroethene	3 [0%	f	F	13
2-Dichloroethane	3	l	0%		- 1	14
2-Dichloropropane	3	1	0%			14
Butanone (MEK)	3	l	0%	İ	j	69
Hexanone	3	i	0%	ł	ļ	69
Methyl-2-pentanone (MIBK)	3	l	0%	ŀ		
cetone	3	ļ	0%		- 1	69
enzene	3	ł		ł	1	145
orizerie romodichloromethane		ŀ	0%		1	14
romodichioromethane romoform	3	1	0%	ļ		14
	3	1	0%	- 1	ľ	14
romomethane (Methyl bromide)	3	- 1	0%]		28
arbon disulfide	3	1	0%	1		14
arbon tetrachloride	3	į	0%	1		14
hiorobenzene	3	1	0%			14
hloroethane	3	- 1	0%	Į.		28
nloroform	3	l	0%			14
nloromethane	3	l	0%			28
	3	į.				
s-1,3-Dichloropropene			0%			11

Sediment Summary Statistics for Dead Creek Sector F Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Dibromochloromethane	3		0%			14
Ethylbenzene	3 (1	33%	11[11	13
Methylene chloride (Dichloromethane)	3		0%	l		14
Styrene	3		0%			14
Tetrachloroethene	3		0%			14
Toluene	3		0%	1		14
trans-1,3-Dichloropropene	3		0%	1		11
Trichloroethene	3 [0%	ſ		14
Vinyl chloride	3		0%			26
Xvienes, Total	3		0%			14

Appendix C-2

Sediment Dioxin Data Summary for Dead Creek Sector F

Sauget Area I

	1			Ī		
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Dioxins and Furans, ug/kg	I			1		
1,2,3,4,6,7,8,9-OCDD	3	3	100%	38.7	88.43	58.16333333
1,2,3,4,6,7,8,9-OCDF	3	3	100%	15.01	32.61	
1,2,3,4,6,7,8-HpCDD	3	3	100%	4.03	9,44	5.97
1,2,3,4,6,7,8-HpCDF	3	3	100%	2.38	5.08	3.453333333
1,2,3,4,7,8,9-HpCDF	3	3	100%	0.157	0.32	0.225
1,2,3,4,7,8-HxCDD	3	3	100%	0.0228	0.0688	0.040233333
1,2,3,4,7,8-HxCDF	3	3	100%	0.0842	0.162	0.1112
1,2,3,6,7,8-HxCDD	3	3	100%	0.141	0.32	0.206666667
1,2,3,6,7,8-HxCDF	3	3	100%	0.0325	0.0719	0.047033333
1,2,3,7,8,9-HxCDD	3	3	100%	0.0667	0.221	0.126266667
1,2,3,7,8,9-HxCDF] 3	3	100%	0.0085	0.0223	0.0139
1,2,3,7,8-PeCDD	3	3	100%	0.0145	0.0389	0.025533333
1,2,3,7,8-PeCDF] 3	2	67%	0.0118	0.0124	0.013616667
2,3,4,6,7,8-HxCDF] 3	3	100%	0.0473	0.0899	0.0625
2,3,4,7,8-PeCDF] 3	3	100%	0.0147	0.0333	0.021966667
2,3,7,8-TCDD	3	3)	100%	0.0055	0.016	0.009933333
2,3,7,8-TCDF] 3	3	100%	0.016	0.0448	0.0304
Total HpCDD	3	3	100%	7.86	17.9	11.43
Total HpCDF] 3	3	100%	10.65	21.65	14.64
Total HxCDD	3	1	33%	1.37	1.37	1.113333333
Total HxCDF	3		0%			1.006666667
Total PeCDD	3		0%			0.259833333
Total PeCDF	3		0%			0.220686667
Total TCDD] 3		0%			0.2075
Total TCDF	3		0%			0.317166667

Appendix C-2 Sediment Data Summary for Borrow Pit Lake Sauget Area I

Compounds	Number Analyzed	Number Detected	Freq. Of Detection	Minimum Detected	Maximum Detected	Average Concen.
Herbicides, ug/kg	Allalyzeu	Detected	Detection	Detected	Detected	Concen.
2,4,5-T	ј з		0%			12
2,4,5-TP (Silvex)	1 3		0%			12
2.4-D	3	2	67%	8.8	11	11
		2		0.0	71	
2,4-DB	3		0%			12
Dalapon	3		0%		•	92
Dicamba	3		0%			28
Dichloroprop	3		0%			142
Dinoseb	3		0%			142
MCPA	3		0%			2,817
MCPP	3		0%			2,817
Pentachlorophenol	3		0%			24
Metals, mg/kg	1 .					
Aluminum] 3	3	100%	11,000	16,000	13,667
Antimony] 3	2	67%	1.5	2.2	2.2
Arsenic] 3	3	100%	13	17	16
Barium] 3	3	100%	240	420.00	350
Beryllium	3	3	100%	0.58	0.82	0.71
Cadmium	3	3	100%	1.6	2.7	2.1
Calcium	3	3	100%	11,000	17,000	14,667
Chromium	3	3	100%	18	26	22
Cobalt] 3	3	100%	7.1	10	8.9
Copper	3	3	100%	36	64	49
Cyanide, Total] 3		0%			0.72
Iron	3	3	100%	28,000	38,000	34.000
Lead	3	3	100%	34	58	48
Magnesium	3	3	100%	3,600	5,600	4.667
Manganese	3	3	100%	940	1,400	1,213
Mercury	3	3	100%	0.10	0.16	0.12
Molybdenum	3	3	100%	0.37	0.92	0.60
Nickel	3	3	100%	35	54	47
Potassium	j	3	100%	1,500	2,200	1,967
Selenium	3	Ĭ	0%	1,500	2,200	1.4
Silver	3	1	33%	0.79	0.79	1.1
Sodium	3	•	0%	0.75	0.75	93
Thallium	3	}	0%1			1.4
Vanadium	3	3	100%	28	40	35
Zinc	3	3	100%	250	370	310
pH	3	3	100%	6.7	7.1	6.9
ਸਾ Total Organic Carbon (mg/kg dry weight)	3	3	100%	33,000	67,000	48,333
PCB, ug/kg			100 /6	33,000	07,000	40,333
	ا م		0%			20
Decachlorobiphenyl	3	ľ	0%		1	39
Dichlorobiphenyl	3				'	7.8
Heptachlorobiphenyl	3		0%			24
Hexachlorobiphenyl	3		0%			16
Monochlorobiphenyl	3 (0%			7.8
Nonachlorobiphenyl	3		0%			39
Octachlorobiphenyl	3	ŀ	0%		,	24
Pentachlorobiphenyl	3	ľ	0%		'	16
Tetrachlorobiphenyl	3]	0%			16
Trichlorobiphenyl	3	İ	0%			7.8
Total PCBs	3		0%		<u> </u>	16
Pesticides, ug/kg						
4,4'-DDD	3	ļ	0%			8.5
4,4'-DDE	3	3	100%	1.1	3.2	2.0
4,4'-DDT	3 3	2 3	67%	1.1	1.4	4.0
Total DDT] 3	3	100%	2.2	22	9.1

Appendix C-2 Sediment Data Summary for Borrow Pit Lake Sauget Area I

	т		<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Compounds	Number Analyzed	Number Detected	Freq. Of Detection	Minimum Detected	Maximum Detected	Average Concen.
Aldrin	3		0%			4.4
Alpha Chlordane] 3	3	100%	0.48	3.2	1.6
alpha-BHC] 3	l	0%			1.3
beta-BHC	3		0%			1.3
delta-BHC] 3	_	0%[1.3
Dieldrin	3	2	67%	0.26	0.50	3.3
Endosulfan I	3	3	100%	1.00	4.90	2.9
Endosulfan II	3	_	0%			8.5
Endosulfan sulfate] 3	2	67%	1.4	9.5	6.6
Endrin	3	_	0%			8.5
Endrin aldehyde] 3	3	100%	1.2	2.2	1.6
Endrin ketone] 3	1	33%	0.72	0.72	6.4
Gamma Chlordane	3	2	67%	0.74	3.0	2.8
gamma-BHC (Lindane)	3	1	33%	4.8	4.8	4.8
Heptachlor] 3		0%			4.4
Heptachlor epoxide] 3	1	33%	4.8	4.8	4.8
Methoxychior	3		0%			44
Toxaphene] 3		0%)			440
1,2,4-Trichlorobenzene] 3		0%	i		240
1,2-Dichlorobenzene] 3		0%			240
1,3-Dichlorobenzene] 3		0%			240
1,4-Dichlorobenzene] 3		0%			240
2,2'-Oxybis(1-Chloropropane)] 3		0%			240
2,4,5-Trichlorophenol] 3		0%			240
2,4,6-Trichlorophenol	3		0%	ļ		240
2,4-Dichlorophenol] 3		0%			240
2,4-Dinitrophenol	3		0%			1,200
2,4-Dinitrotoluene] 3		0%			240
2,6-Dinitrotoluene	3		0%	-		240
2-Chloronaphthalene	3		0%			240
2-Chlorophenol	3		0%			240
2-Methylnaphthalene	3		0%			240
2-Methylphenol (o-cresol)	3		0%	ì		240
2-Nitroaniline] 3		0%			1,200
2-Nitrophenol	3		0%			240
3,3'-Dichlorobenzidine	3		0%	į		463
3-Methylphenol/4-Methylphenol	3		0%			240
3-Nitroaniline	3		0%			1,200
4,6-Dinitro-2-methylphenol	3		0%			1,200
4-Bromophenylphenyl ether	3		0%		Į.	240
4-Chloro-3-methylphenol	3		0%			240
4-Chloroaniline	3		0%]		463
4-Chlorophenylphenyl ether	3		0%			240
4-Nitroaniline	3		0%			1,200
4-Nitrophenol	3		0%			1,200
Acenaphthene	3		0%			240
Acenaphthylene	3		0%	j		240
Anthracene	3		0%		ł	240
Benzo(a)anthracene	3		0%			240
Benzo(a)pyrene	3		0%		i	127
Benzo(b)fluoranthene	3		0%	j		240
Benzo(g,h,i)perylene	3		0%			240
Benzo(k)fluoranthene	3		0%			240
bis(2-Chloroethoxy)methane	3		0%	}	1	240
bis(2-Chloroethyl)ether	3		0%			240 240
bis(2-Ethylhexyl)phthalate	3		0%]	Ì	240 240
Butylbenzylphthalate	3		0%			240 240
Carbazole	3		0%	l		240 240
Carbazole	3		0%			240
Di-n-butylphthalate	3		0% 0%			
Di-n-octylphthalate	3		0%		i	240
					i	240
Dibenzo(a,h)anthracene	3		0%		Į.	127
Dibenzofuran	3		0%			240
Diethylphthalate	3		0%	ſ		240
Dimethylphthalate	3		0%	}		240
Fluoranthene	3		0%	J		240
Fluorene	3		0%			240
Hexachlorobenzene	3		0%		i	97
Hexachlorobutadiene	3		0%			240

Appendix C-2 Sediment Data Summary for Borrow Pit Lake Sauget Area I

					Ι	T
						1
	Number	Number	Freq. Of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concen.
Hexachlorocyclopentadiene	3		0%			240
Hexachloroethane] 3		0%			240
Indeno(1,2,3-cd)pyrene] 3		0%			240
Isophorone	3		0%		•	240
N-Nitroso-di-n-propylamine	3		0%			240
N-Nitrosodiphenylamine] 3		0%			240
Naphthalene] 3		0%			240
Nitrobenzene] 3		0%			240
Pentachlorophenol] 3		0%			1,200
Phenanthrene] 3		0%			240
Phenol] 3		0%			240
Pyrene] 3		0%			240
Total PAHs	3		0%			240
VOCs, ug/kg			_			
1,1,1-Trichloroethane] 3		0%		ĺ	13
1,1,2,2-Tetrachloroethane] 3		0%			13
1,1,2-Trichloroethane] 3		0%			13
1,1-Dichloroethane] 3		0%			13
1,1-Dichloroethene	3		0%			12
1,2-Dichloroethane] 3		0%			13
1,2-Dichloropropane] 3		0%			13
2-Butanone (MEK)] 3		0%			65
2-Hexanone] 3		0%			65
4-Methyl-2-pentanone (MIBK)] 3		0%			65
Acetone	3		0%		}	130
Benzene] 3		0%			13
Bromodichloromethane	3		0%			13
Bromoform] 3		0%			13
Bromomethane (Methyl bromide)] 3		0%			26
Carbon disulfide	3		0%			13
Carbon tetrachloride] 3		0%			13
Chlorobenzene] 3		0%			13
Chloroethane] 3		0%			26
Chloroform] 3		0%			13
Chloromethane	3		0%			26
cis-1,3-Dichloropropene	3		0%			10
Cis/Trans-1,2-Dichloroethene	3		0%			13
Dibromochloromethane	3		0%			13
Ethylbenzene	3		0%			13
Methylene chloride (Dichloromethane)] 3		0%			13
Styrene	3		0%			13
Tetrachloroethene] 3]		0%			13
Toluene	3		0%			13
trans-1,3-Dichloropropene	3		0%			10
Trichloroethene] 3		0%			13
Vinyl chloride	3		0%			26
Xylenes, Total	3		0%			13

Appendix C-2 Sediment Dioxin Summary for Borrow Pit Lake Sauget Area I

Compounds	Number Analyzed	Number Detected	Freq. Of Detection	Minimum Detected	Maximum Detected	Average Concen.
Dioxins and Furans, ug/	kg					
1,2,3,4,6,7,8,9-OCDD	3	3	100%	8.63	17.25	13.79
1,2,3,4,6,7,8,9-OCDF	3	3	100%	0.24	0.76	0.55
1,2,3,4,6,7,8-HpCDD	3	3	100%	0.24	0.44	0.37
1,2,3,4,6,7,8-HpCDF	3	3	100%	0.05	0.16	0.11
1,2,3,4,7,8,9-HpCDF	3	3	100%	0.01	0.01	0.01
1,2,3,4,7,8-HxCDD	3	2	67%	0.0024	0.0049	0.0031
1,2,3,4,7,8-HxCDF	3	3	100%	0.01	0.0092	0.01
1,2,3,6,7,8-HxCDD	3	3	100%	0.01	0.02	0.01
1,2,3,6,7,8-HxCDF	3	3	100%	0.0030	0.0059	0.0043
1,2,3,7,8,9-HxCDD	3	3	100%	0.01	0.02	0.01
1,2,3,7,8,9-HxCDF	3	3	100%	0.00074	0.0036	0.0025
1,2,3,7,8-PeCDD	3	3	100%	0.0021	0.0035	0.0026
1,2,3,7,8-PeCDF	3	2	67%	0.0015	0.0027	0.0017
2,3,4,6,7,8-HxCDF	3	3	100%	0.0035	0.0073	0.01
2,3,4,7,8-PeCDF	3	3	100%	0.0029	0.0042	0.0037
2,3,7,8-TCDD	3	3	100%	0.00090	0.01	0.01
2,3,7,8-TCDF	3	3	100%	0.01	0.01	0.01
Total HpCDD	3	3	100%	0.54	0.93	0.80
Total HpCDF	3	2	67%	0.18	0.60	0.35
Total HxCDD	3	i	0%			0.07
Total HxCDF	3		0%			0.05
Total PeCDD	3		0%			0.02
Total PeCDF	3		0%			0.02
Total TCDD	3		0%			0.02
Total TCDF	3		0%			0.04

Reference Area Sediment Summary Statistics Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds Herbicides, ug/kg	Analyzed	Detected	Detection	Detected	Detected	Concentration
2,4,5-T	4		0%	ļ		9.00
2,4,5-TP (Silvex)	-1 - 21		0%			9.00
2,4-D	4	1	25%	12	12	10
2,4-DB	-1 41	•	0%	~]	'-	9 00
Dalapon	4		0%			69
Dicamba	- 4		0%			2
Dichloroprop	4		0%			110
Dinoseb	4		0%	1		110
MCPA	- 41		0%			2175
MCPP	41		0%			2175
Pentachlorophenol Metals, mg/kg	4	1	25%	1.9	1.9	1
metals, mg/kg Aluminum	4	4	100%	12000	19000	1450
Antimony	1 1	3	75%	1.3	19000	2.10
Arsenic	1 41	4	100%	67	8	7.10
Barium	1 41	4	100%	170	230	200
Beryllium	4	4	100%	0 62	- 1	0.70
Cadmium	41	4	100%	0.29	0.65	0.42
Calcium	4	4	100%	12000	18000	1350
Chromium	4	4	100%	17	25	2
Cobalt	4	4	100%	7.1	10	8.6
Copper	41	4	100%	16	23	1
Cyanide, Total	- 4		0%			0.59
lron _	- 4	4	100%	18000	24000	2075
Lead	- 4	4	100%	17	26	2
Magnesium	- 4	4	100%	3300	6500	5150
Manganese Mercury		4	100% 100%	570 0.04	770 0.063	700 0.00
Molybdenum	1 1	4	100%	0.04	0.063	0.44
Nickel	1 41	4	100%	18	26	2
Potassium	1 21	4	100%	1600	2600	2100
Selenium	1 41	-	0%		2000	1.0
Silver	41		0%			1.00
Sodium	4		0%	1		85
Thallium	4		0%	1		1.00
Vanadium	- 4	4	100%	30	44	35
Zinc	4	4	100%	59	96	83
pH Total Organic Carbon	4	4	100%	6.8 12000	7.31 23000	7.07 17000
PCB, ug/kg	+					
Decachlorobiphenyl	4		0%			18
Dichlorobiphenyl	4		0%			3.6
Heptachlorobiphenyl	1 41		0%	- 1	i	1
Hexachlorobiphenyl	4		0%			7.2
Monochlorobiphenyl	4		0%	į.		3.60
Nonachlorobiphenyl	4		0%	1		18.3
Octachlorobiphenyl	4		0%		1	1
Pentachlorobiphenyl	4		0%			7.2
Tetrachlorobiphenyl	4]		0%		J	7.2
Trichlorobiphenyl	4 [0%[3.60
Total PCBs	4		0%			7.3
esticides, ug/kg	1 .1				1	
I.4'-DDD	1 41		0%			3.5
1,4'-DDE 1,4'-DDT	4		0% 0%		l	3.56 3.56
NAT-DDT Nation	1 1		0%	J	j	3 Si 1.85
Moha Chlordane			0%	- 1	1	1.8
Moha-BHC	1 41		0%	1	l	0.5
neta-BHC	1 41		0%			0.5
lelta-BHC	1 41		0%		l	0.5
Dieldrin	4		0%			3.5
Endosulfan 1	4		0%		ļ	1.8
indosulfan II	1 41		0%	1	i	3.5
ndosulfan sulfate	4	1	0%	- 1		3.5
indrin	4 1		0%	- 1	ļ	3.5
ndrin aldehyde	41		0%	- 1	j	3.5
Endrin ketone	41		0%	l l	1	3.5
Samma Chlordane	4		0%	1	l	1.6
amma-BHC (Lindane)	1 4		0%			1.8
leptachlor	1 1	ł	0%	l.	ł	1.8
			0% 0% 0%	İ	ĺ	1.8 1.8 1

Reference Area Sediment Summary Statistics Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
SVOCs, ug/kg 1,2,4-Trichlorobenzene	4		0%		20.40100	1
,2-Dichlorobenzene	4		0%			1
,3-Dichlorobenzene	4		0%			!
,4-Dichlorobenzene ,2'-Oxybis(1-Chloropropane)	1 1		0%			1 1
4,5-Trichlorophenol	4		0%		1	i
2,4,6-Trichlorophenol	4 4		0%		ł	!
?,4-Dichlorophenol !,4-Dinitrophenol	1 1		0%		<u> </u>	1 9
4-Dinitrotoluene	1 4		0%			ĭ
6-Dinitrotoluene	1 4		0%			1.
-Chloronaphthalene	1 1		0%			1. 1.
-Chlorophenol -Methylnaphthalene	4		0%			1
-Methylphenol (o-cresol)	1 4		0%			i
-Nitroaniline	1 4		0%		J	9
-Nitrophenol	1 1		0%			11
,3'-Dichlorobenzidine -Methylphenol/4-Methylphenol	1		0%			3:
-Nitroaniline	1 41		0%			<u> </u>
,6-Dinitro-2-methylphenol	4		0%			9
-Bromophenylphenyl ether	1 1		0%			1
-Chloro-3-methylphenol -Chloroaniline	1 1		0%			1 3
-Chlorophenylphenyl ether	1 41		0%			11
-Nitroaniline	4		0%			8
-Nitrophenol	1 11		0%			9
cenaphthene cenaphthylene	1 1		0%			1
nthracene	1 4		0%			i
enzo(a)anthracene	4		0%			1
enzo(a)pyrene	•		0%			_
enzo(b)fluoranthene enzo(g,h,i)perylene	4		0%			1
enzo(k)fluoranthene	1 41		0%			i
s(2-Chloroethoxy)methane	1 4		0%			1
s(2-Chloroethyl)ether	1 1		0% 0%			1
s(2-Ethylhexyl)phthalate utylbenzylphthalate	1 1		0%			1 1
arbazole	1 41		0%			1
hrysene	4		0%			1.
i-n-butylphthalate i-n-octylphthalate	1		0%			1
ibenzo(a,h)anthracene			0%			1
ibenzofuran	4		0%			1
ethylphthalate	41		0%			1.
imethylphthalate uoranthene	1 1		0%			1:
uorene			0%			1
exachlorobenzene	4		0%			
exachlorobutadiene			0%			1
exachlorocyclopentadiene exachloroethane	1		0%			12
deno(1,2,3-cd)pyrene	1 7		0%			1
ophorone	4		0%			1
Nitroso-di-n-propylamine	41		0%			1.
-Nitrosodiphenylamine aphthalene	4		0% 0%			1. 1.
trobenzene	4		0%			1
entachlorophenol	4		0%	İ		9
nenanthrene	1 41		0%		i	1
nenol rrene	4		0% 0%	ļ	}	1
n ene			ا***		i	•
tal PAHs					ł	
Cs, ug/kg			096			_
1,1-Tricmoroethane 1,2,2-Tetrachioroethane	1		0%	i		6. 6.
,2-Trichloroethane	[4]		0%			6.
I-Dichloroethane	4		0%	1		6.
-Dichloroethene	4		0%			5.
?-Dichloroethane ?-Dichloropropane	4		0% 0%		ļ	6. 6.
Butanone (MEK)	4	3	75%	14	40	0.
Hexanone	4	-	0%			
Methyl-2-pentanone (MIBK)	4	_ 1	0%			
elone nzene	4	3	75% 0%	52	160	6.
omodichloromethane	7		0%			6.
omoform	4		0%			6.
omomethane (Methyl bromide)	4		0%			
rbon disulfide	1 1		0%	ł	1	6.
rbon tetrachioride lorobenzene	4		0% 0%	l		6. 6.
loroethane	7		0%	l		0.
loroform	4		0%	ł		6.
foromethane	4		0%	ļ		-
-1,3-Dichloropropene /Trans-1,2-Dichloroethene	4 4		0% 0%			5. 6 .
oromochloromethane			0%	l		6. 6.
rylbenzene	4		0%	l		6.
thylene chloride (Dichloromethane)	4		0%			6.
rene	4		0%	l		6.
trachioroethene	4		0%	l		6.
trachloroethene luene	4		0%			6.
rachiomethene						

Appendix C-2

Reference Area Sediment Dioxin Summary Statistics

Sauget Area I

	 -		I	· · · · · · · · · · · · · · · · · · ·		
	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
Compounds	Allalyzeu	Detected	Detection	Detected	Detected	Concentration
Dioxins and Furans, ug/kg	T	-				 1
1,2,3,4,6,7,8,9-OCDD	4	4	100%	3.47	8.57	5.24
1,2,3,4,6,7,8,9-OCDF	4	4	100%	0.0143	0.136	0.0963
1,2,3,4,6,7,8-HpCDD	4	4	100%	0.128	0.162	0.146
1,2,3,4,6,7,8-HpCDF	4	4	100%	0.0059	0.0307	0.0226
1,2,3,4,7,8,9-HpCDF	4	1	25%	0.003	0.003	0.001
1,2,3,4,7,8-HxCDD	4	3	75%	0.0011	0.0022	0.0015
1,2,3,4,7,8-HxCDF	4	2	50%	0.0029	0.003	0.0019
1,2,3,6,7,8-HxCDD	4	4	100%	0.0033	0.0046	0.0041
1,2,3,6,7,8-HxCDF	4 [1	25%	0.0013	0.0013	0.00061
1,2,3,7,8,9-HxCDD	4	4	100%	0.0034	0.0051	0.0044
1,2,3,7,8,9-HxCDF	4		0%			0.00011
1,2,3,7,8-PeCDD	4	2	50%	0.0013	0.0015	0.0010
1,2,3,7,8-PeCDF	4	1	25%	0.0011	0.0011	0.00045
2,3,4,6,7,8-HxCDF	4	2	50%	0.0016	0.0018	0.0010
2,3,4,7,8-PeCDF	4	1	25%	0.0013	0.0013	0.00066
2,3,7,8-TCDD	4	2	50%	0.00064	0.0035	0.0012
2,3,7,8-TCDF	4	4	100%	0.00076	0.0014	0.0012
Total HpCDD	4	4	100%	0.278	0.347	0.323
Total HpCDF	4	2	50%	0.0164	0.113	0.0581
Total HxCDD	4	1	25%	0.0458	0.0458	0.0288
Total HxCDF	4 [3 [75%	0.0062	0.0252	0.0165
Total PeCDD	4	1	25%	0.021	0.021	0.017
Total PeCDF	4		0%		Į	0.0040
Total TCDD	4		0%		1	0.012
Total TCDF	4	2	50%	0.0068	0.0145	0.00914

Appendix C-3 Summary Statistics for Borrow Prt Lake Largemouth Bass Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
Herbicides, ug/kg	3		0%			5.00
2,4,5-T 2,4,5-TP (Silvex)	3		0%			5.00
2,4-D	š		0%	1		5.00
2.4-DB	3		0%			5.00
Dalapon	3		0%			1000
Dicamba	3	1	33%	1.9	1.9	5.63
Dichloroprop	3		0%			50
Dinoseb	3		0%	1800	4000	50
MCPA((4-chloro-2-methylphenoxy)- MCPP(2-(4-chloro-2-	3	1	33% 0%	1800	1800	1267 1000
Pentachlorophenol	3		i ő%			6.67
Metals, mg/kg			- "			5.57
Numinum	3	2	67%	19	33	20
Antimony	3	_	0%			0.09
Arsenic	3		0%			3 17
Beryllium	3		0%			0.47
Cadmium	3	_	0%			0.23
Chromium	3	3	100%	0.45	0.93	0.64
Copper Cyanide, Total	3	3	100% 0%	0.41	0.68	0.54 5
ead .	3		0%			0.23
Mercury	3	2	67%	0.057	0.064	0.04
Nickel	3	_	0%	0.007	0.004	4.70
Selenium	3	2	67%	0.6	0.63	0.49
Silver	3		0%			0.05
inc .	3	3	100%	15	19	17
	_ 1			. !		
6 Upid	3	3	100%	1.5	1.8	1.60
PCB, ug/kg	3		200	1		25
Decachlorobiphenyl Dichlorobiphenyl	3 3		0% 0%	l		25 5.00
Reptachlorobiphenyl	3	2	67%	16	21	5.00
lexachlorobiphenyl	3	3	100%	44	150	105
Monochlorobiphenyl	3	-	0%			5.00
lonachlorobiphenyl	3		0%			25
Octachlorobiphenyl	3		0%			15
entachlorobiphenyl	3	3	100%	30	130	90
etrachlorobiphenyl	3 3	2	67%	19	46	25
richlorobiphenyl	ျ		0%			5.00
otal PCBs	3	3	100%	99	320	237
esticides, ug/kg						
4'-DDD	3		0%			6.50
4'-DDE	3	2	67%	15	21	14
4'-DDT	3	_	0%			6.50
otal DDT	3	2	67%	15	21	14
Idrin Ipha Chlordane	3		0% 0%	!		3.40 3.40
Ipha-BHC	3		0%	ľ		3.40
eta-BHC	3		0%			3.40
elta-BHC	3		0%	1		3.40
ieldrin	3		0%			6.50
ndosulfan I	3 [0%			3.40
ndosulfan II	3		0%			6.50
ndosulfan sulfate	3		0%			6.50
ndrin	3 3		0%			6.50
ndrin aldehyde ndrin ketone	3		0% 0%			6.50 6.50
iamma Chiordane	š	2	67%	15	19	12
amma-BHC (Lindane)	3	-	0%	~	.*	3.40
eptachior	3	1	33%	1.5	1.5	2.77
eptachlor epoxide	3		0%			3.40
lethoxychlor	3		0%	1		34
oxaphene VOCs walks	3		0%			340
VOCs, ug/kg 2,4-Trichlorobenzene	3		0%	1		0-
2-Dichlorobenzene	3		0%			85 85
3-Dichlorobenzene	3		0%	1		85
4-Dichlorobenzene	3		0%	1		85 85
2-Oxybis(1-chloropropane)(bis(2-	3	-	ő%	ŀ		∞ 85
4,5-Trichlorophenol	3		0%	ľ	ĺ	210
4,6-Trichlorophenol	3	i	0%	j		85
4-Dichlorophenol	3	Į	0%		Į	85
4-Dimethylphenol	3		0%		l	85
4-Dinitrophenol	3	ŀ	0%		l	210
4-Dinitrotoluene 6-Dinitrotoluene	3		0% 0%	į	ļ	85 85
Chloronaphthalene	3	1	0%	i	Ì	85
Chlorophenol	3		0%	į		85
-Methyl-4,6-dinitrophenol	3		0%	ļ		210
Methylnaphthalene	3		0%	ľ		85
	3		0%	ŀ		85
-Methylphenol (o-cresol)		i	0%	I		210
Methylphenol (o-cresol) Nitroaniline	3			I		85
Methylphenol (o-cresol) Nitroaniline Nitrophenol	3	J	0%			
Methylphenol (o-cresol) Nitroaniline Nitrophenol S4-Methylphenol (m&p-cresol)	3 3		0%	1		85
Methylphenol (o-cresol) Nitrosanlline Nitrophenol \$4-Methylphenol (m&p-cresol) 3'-Dichlorobenzidine	3 3 3		0% 0%			85 85
Methylphenol (o-cresol) Nitroaniline Nitrophenol 3-Methylphenol (m&p-cresol) 3-Dichlorobenzidine Nitroaniline	3 3 3 3		0% 0% 0%		i	85 85 210
Methylphenol (o-cresol) Nitroaniline Nitrophenol S4-Methylphenol (m&p-cresol) 3-Dichlorobenzidine Nitroaniline Bromophenylphenyl ether	3 3 3 3 3		0% 0% 0% 0%			85 85 210 85
Methylphenol (o-cresol) Nitroaniline Nitrophenol 3-Methylphenol (m&p-cresol) 3-Dichlorobenzidine Nitroaniline	3 3 3 3		0% 0% 0%			85 85 210

Appendix C-3

Summary Statistics for Borrow Pit Lake Largemouth Bass
Saugel Area I

				·		
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
4-Nitroaniline	3	Detected	0%	Detected	Detected	210
4-Nitrophenol	3		l 0%		i	210
Acenaphthene	3		0%			85
Acenaphthylene	3		0%		i	85
Anthracene	3		0%			85
Benzo(a)anthracene	3		0%			85
Benzo(a)pyrene	1 3		0%			85
Benzo(b)fluoranthene	3		0%			85
Benzo(g,h,i)perylene	3		0%			85
Benzo(k)fluoranthene	3		0%			85
ois(2-Chloroethoxy)methane] 3		0%			85
ois(2-Chloroethyl)ether] 3		0%			85
ois(2-Ethylhexyl)phthalate	3		0%(91.67
Butylbenzylphthalate	3		0%			85
Carbazole	3		0%			85
Chrysene	3		0%	1		85
Di-n-butylphthalate	3	1	33%	32	32	67.33
Di-n-octylphthalate	3		0%			85
Dibenzo(a,h)anthracene	3		0%			85
Dibenzofuran	3		0%			85
Diethylphthalate] 3		0%			85
Dimethylphthalate	3		0%			85
luoranthene] 3 [[0%[85
luorene] 3		0%			85
lexachlorobenzene	3		0%			85
lexachlorobutadiene] 3]		0%			85
lexachiorocyclopentadiene] 3]		0%			85
lexachloroethane	3		0%			85
ndeno(1,2,3-cd)pyrene	3		0%			85
sophorone	3		0%			85
-Nitrosodi-n-propylamine	3		0%			85
4 -	3		0%			85
laphthalene	3 (0%[85
Vitrobenzene	3		0%			85
Pentachlorophenol	3 3		0%			210 85
Phenanthrene Phenol	3		0% 0%			85 85
yrene	3		0%			85 85
•	· 1					
otal PAHs	3		0%			85
Pioxins and Furans, ug/kg	ا ا					
,2,3,4,6,7,8,9-OCDD	3		0%			0.006533333
2,3,4,6,7,8,9-OCDF	3		0%			0.00105
,2,3,4,6,7,8-HpCDD	3		0%			0.000866687
2,3,4,6,7,8-HpCDF	3		0%			0.0001
,2,3,4,7,8,9-HpCDF	3		0%			0.000166667
,2,3,4,7,8-HxCDD	3 3		0%) 33%	0.00048	0.00048	0.00015 0.000243333
2,3,4,7,8-HxCDF	3		33%	0.00048	0.00048	
,2,3,6,7,8-HxCDD	3	1 1	33%	0.00054	0.00054	0.000293333 0.000143333
,2,3,6,7,8-HxCDF ,2,3,7,8,9-HxCDD	3	'	0%	0.00023	0.00023	0.000143333
,2,3,7,8,9-HxCDF	3		0%			0 000133333
,2,3,7,8,9-rxCDF ,2,3,7,8-PeCDD	3	1	33%	0.00081	0.00081	0.000501667
2.3.7.8-PeCDF	3	i	33%	0.0001	0.00081	0.000396667
3.4,6,7,8-HxCDF	3	1	33%	0 00038	0.00038	0.00021
,3,4,7,8-PeCDF	3	2	67%	0.00071	0.00038	0 000663333
.3,7,8-TCDD	3	2	67%	0.00071	0.00097	0.000733333
3.7.8-TCDF	3	3	100%	0.00073	0.0008	0.009266667
otal HpCDD	3	2	67%	0.0014	0.002	0.005200007
otal HpCDF	3	1	33%	0.0014	0.002	0.004366667
otal HxCDD	3	i	33%	0.00054	0.00054	0.00048
		• 1		3.00034	3.00004	
Otal HxCDF	2		[]442.1			
otal HxCDF otal PeCDD	3	4	0% 33%	0.00081	0.00081	0.01675 0.00501667
otal PeCDD	3 [1	33%	0.00081	0 00081	0.000501667
		1		0.00081 0.00075	0 00081 0.00075	

Reference Area Largemouth Bass Data Sauget Area I

Compounds							I
	Compounds						Average Concentration
2.4.5 TP (Silvex)				204			
2.4-D							5.00 5.00
24-DB		71					5.00
Dicamba		4		0%			5.00
Dichisorproprop		4]					100
Dinose		4					11
MCPA c-bloro-2-methylphenoxy -propal		4					5
MCPPI2/4-Chitoro-Z-methyliphenoxyl-propon 4		11					50 100
Pentachicrophenol		7					100
Matals, mg/kg							6.25
Aluminum	4-1-						<u> </u>
Arsenic		4	4	100%	22.00	81.00	4
Beryllium		1					0.09
Cadmium							2.10
Chromium							0.46
Copper		7.1	4		0.10	0.36	0.23 0.28
Cyanide, Total 4		71					0.52
Lead 4			,		0.55	0.04	5.00
Siciliary		4					0.23
Selenium	rcury	4	4	100%	0.10	0.14	0.11
Silvier		4					4.56
X Lipid		4	3		0.53	0.86	0.60
K Lipid 4							0.05
PCBs and Psetticides, ug/kg Decischlorobipheny1 Decisionobipheny1	·C	4	4	100%	8.50	15.00	1.
PCBs and Pesticides, ug/kg Decischlorobiphenyl Decision-biphenyl D	Chald	.1.	ا ،	4000			
Decachiorobipheny			4	100%	U.66	2.40	1.19
Dichlorobiphenyl Hespachio		انما		0%			25
Heptachiorobiphenyl							5.00
Monochiorobiphenyl	ptachlorobiphenyl	4					15
Nonachiorobiphenyl			1		9.30	9.30	9.83
Detachiorobipheny		· 1					5.00
Pentachiorobiphenyl			i				25
Tetrachiorobiphenyi					0.50	0.50	15
Trichicrobiphenyl		7	'		9.50	9.50	9.88 10
4.4-DDD		71					5.00
4							5.54
Alchir		4	4		3.50	6.60	5.30
Alpha Chlordane 4	-DOT	4	í				5.54
							2.89
Peta-BHC						i	2.89
Selta Selt							2.89
Dieldrin		* 1					2.89 2.89
Indosulfan I			2		5 30	5.60	5.01
Endosulfan II			- 1		3.50	5.50	2.89
Endrin in indehyde	Josulfan II	4					5.54
Endrin aldehyde		4			1		5.54
Endrin ketone							5.54
Samma Chlordane			i				5.54
amma-BHC (Lindane)		4	1				5.54
Implaction 4		1	l		l	ļ	2.89 2.89
Implication Implication	otachlor		l		l	ļ	2.89 2.89
Methoxychlor		71	ŀ		l	ļ	2.89
Oxyletic Oxyletic		4	į				2.69
VOCs, ug/kg	aphene		l		l	ļ	289
2-Dichlorobenzene 4 0% 3-Dichlorobenzene 4 0% 4-Dichlorobenzene 4 0% 2-Oxybis(1-chloropropane)(bis(2-Chlor 4 0% 4.5-Trichlorophenol 4 0% 4-Brichlorophenol 4 0% 4-Dichlorophenol 4 0% 4-Dinitrophenol 4 0% 4-Dinitrophenol 4 0% 4-Dinitrophenol 4 0% 4-Dinitrophenol 4 0% 6-Dinitrobluene 4 0% 6-Dinitrobluene 4 0% 6-Indirophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Chlorophenol 4 0% Methyl-1,6-dinitrophenol 4 0% Methyl-1,6-dinitrophenol 4 0% Methyl-1,6-dinitrophenol 4 0%	OCs, ug/kg	İ				The state of the s	
3-Dichlorobenzene	4-Trichlorobenzene		ļ				85
4-Dichlorobenzene					i	ŀ	85
2-Oxybis(1-chloropropane)(bis(2-Chlor 4 0% 4.5-Trichlorophenol 4 0% 4.6-Trichlorophenol 4 0% 4.6-Trichlorophenol 4 0% 4.Dichlorophenol 4 0% 4.Dinitrophenol 4 0% 4.Dinitrophenol 4 0% 4.Dinitrophenol 4 0% 6.Dinitrophenol			ł		ł	ł	85
4,5-Trichlorophenol 4 0% 4,6-Trichlorophenol 4 0% 4,6-Trichlorophenol 4 0% 4-Dichlorophenol 4 0% 4-Dimethylphenol 4 0% 4-Dimitrophenol 4 0% 4-Dimitrophenol 4 0% 6-Dimitrololuene 4 0% 6-Dimitrololuene 4 0% 6-Dimitrololuene 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0% 6-Initrophenol 4 0%					l		85
4.6-Trichlorophenol 4 0% 4-Dichlorophenol 4 0% 4-Directlyphenol 4 0% 4-Directlyphenol 4 0% 4-Directlyphenol 4 0% 4-Directlyphenol 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0% 6-Directlosiuene 4 0%					I		85
4-Dichlorophenol 4 0% 4-Dimethylphenol 4 0% 4-Dinitrophenol 4 0% 4-Dinitrololuene 4 0% 6-Dinitrololuene 4 0% Chloronaphthalene 4 0% Chlorophenol 4 0% Methyl-4-6-dinitrophenol 4 0% Methyl-4-6-dinitrophenol 4 0% Methyl-4-6-dinitrophenol 4 0%					l		210
4-Dimethylphenol 4 0% 4-Dinilrophenol 4 0% 4-Dinilrophenol 4 0% 6-Dinilrotoluene 4 0% 6-Dinilrotoluene 4 0% Chlorophenol 4 0% Methyl-4-6-dinilrophenol 4 0% Methyla-bhalene 4 0%					İ		85 85
4-Dinitrophenol 4 0% 4-Dinitrololuene 4 0% 6-Dinitrololuene 4 0% -Chloronaphthalene 4 0% -Chlorophenol 4 0% Methyl-4,6-dinitrophenol 4 0% Methylnaphthalene 4 0%					j		85 85
4-Dinitrololuene 4 0% 6-Dinitrololuene 4 0% -Chloronaphthalene 4 0% -Chlorophenol 4 0% -Methyl-4-6-dinitrophenol 4 0% -Methylnaphthalene 4 0%					ŀ		210
6-Dnitrotoluene 4 0% Chloronaphthalene 4 0% Chlorophenol 4 0% Wethyl-4.6-dinitrophenol 4 0% -Methyl-4.6-dinitrophenol 4 0% -Methyl-4.6-dinitrophenol 4 0%	Dinitrololuene				ŀ		85
Chlorophenol 4 0% Methyl-4,6-dinitrophenol 4 0% Methylnaphthalene 4 0%				0%	j		85
Methyl-4,6-dinitrophenol 4 0% -Methylnaphthalene 4 0%					l		85
Methylnaphthalene 4 0%					l		85
					i		210
		* 1			i		85
Methylphenol (o-cresol) 4 0%					l		85
Nitroaniline 4 0% Nitrophenol 4 0%			l				210
Nutroprierio 4 0% 84-Methylphenol (m&p-cresol) 4 0%					l		85 85
3'-Dichlorobenzidine 4 0%		I					85 85
Nitroaniline 4 0%		· I			l		210
Bromophenylphenyl ether 4 0%							85
Chloro-3-methylphenol 4 0%	nloro-3-methylphenol				ļ		85
Chloroaniline 4 0%					i		85

Reference Area Largemouth Bass Data Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
4-Chlorophenylphenyl ether	4	3-1-0-1-0	0%			8:
4-Nitroaniline	4		0%			210
4-Nitrophenol	4		0%			210
Acenaphthene	1 41		0%			8:
Acenaphthylene	1 41		0%			8
Anthracene	1 41		0%	1		8.
Benzo(a)anthracene	4		0%			8.
Benzo(a)pyrene	4		ا ًهُوْدَ ا	ŀ		a.
Benzo(b)fluoranthene	1 4		ا ٌهُوْد ا	i		ě.
Benzo(g,h,i)perylene	1 4		0%	i		8:
Benzo(k)fluoranthene	4		0%			8
bis(2-Chloroethoxy)methane	1 41		0%	ł		8
	1 71		0%			8
bis(2-Chloroethyl)ether	1 41		0%	ŀ		8
bis(2-Ethylhexyl)phthalate				i		
Butylbenzylphthalate	1 41		0%	l		8.
Carbazole	4		0%	i		8
Chrysene	4	_	0%			8
Di-n-butylphthalate	4 !	2	50%	19.00	20.00	5
Di-n-octylphthalate	4		0%	1		8
Dibenzo(a,h)anthracene	4		0%	i		8:
Dibenzofuran	4		0%	Į.		8:
Diethylphthalate	4		0%			8
Dimethylphthalate	1 4		0%	ł		8:
Fluoranthene	4		0%			8:
Fluorene	4		0%			8
Hexachlorobenzene	1 41		0%			8:
Hexachlorobutadiene	1 41		0%	!		8
Hexachlorocyclopentadiene	1 41		0%			8:
Hexachloroethane	1 41		0%	ł		8.
Indeno(1,2,3-cd)pyrene	1 21		0%			8.
sophorone	1 21		0%			8.
			0%			8.5
n-Nitrosodi-n-propylamine	1 1					
N-Nitrosodiphenylamine/Diphenylamine	1 1		0%	į		85
Naphthalene	4		0%	}		8.5
Nitrobenzene	4		0%	1		8.5
Pentachlorophenol	4		0%			210
Phenanthrene	4		0%			8.
Phenol	4]		0%			8.9
Ругеле	4		0%			85
Total PAHs	l [
Dioxins and Furans, ug/kg						
,2,3,4,6,7,8,9-OCDD	4	4	100%	0.0055	0.0123	0.00972
,2,3,4,6,7,8,9-OCDF	1 4		0%			0.0005375
1,2,3,4,6,7,8-HpCDD	1 41		0%			0.00042
2,3,4,6,7,8-HpCDF	1 41		0%	ł		0.000237
2,3,4,7,8,9-HpCDF	4		0%			0.000387
1,2,3,4,7,8-HxCDD	4		0%	1		0.000287
72,3,4,7,8-HxCDF	1 4	3	75%	0.00084	0.0011	0.000287
,2,3,4,7,6-HxCDF ,2,3,6,7,8-HxCDD	4	3	0%	7.00004	0.0011	0.00078
] [0%	l		
1,2,3,6,7,8-HxCDF	1 41	i		(0.000162
,2,3,7,8,9-HxCDD			0%	j		0.0003129
.2.3.7.8,9-HxCDF	4		0%			0.000237
,2,3,7,8-PeCDD	4		0%			0.00032
,2,3,7,8-PeCDF	4		0%	I		0.000187
,3,4,6,7,8-HxCDF	4		0%	i		0.000
,3,4,7,8-PeCDF	1 41	ľ	0%	ľ		0.000167
,3,7,8-TCDD	4	l	0%			0.00022
3,7,8-TCDF	4	1	25%	0.0016	0.0016	0.0005379
otal HpCDD	1 4		0%			0.00042
otal HpCDF	1 41		0%			0.001862
otal HxCDD	1 41		0%	l		0.000287
otal HxCDF	1 11	ł	0%	ł		0.009612
otal PeCDD		i	0%			0.003012
USE I CODO	, • t	ļ		1		
Mai Perns	⊿ }		∩ev I			ለ ለ1ድለን
otal PeCDF otal TCDD			0% 0%	į	i	0.01607 0.00022

Brown Bullhead Data Summary for Borrow Pit Lake Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
orbicides, ug/kg 4,5-T	3		0%			
4,5-TP (Silvex)	3		0%	ı		5.: 5.:
4-D	3		0%	ĺ		5.
4-DB	3 ∫		0%	{	1	5.0
alapon	3		0%	i		10
camba chloroprop	3	4	0%			8.
noseb	3	1	33% 0%	6.6	6.6	
CPAI(4-chloro-2-methylphenoxy)-acetic a	š		0%	ĺ		100
CPP[2-(4-chloro-2-methylphenoxy)-propan	3		0%			10
ntachlorophenol	3		0%			
etals, mg/kg						
uminum	3	3	100%	7.7	18	
timony	3		0%			0.0
senic	3		0%			1.0
ryllium dmium	3 3		0% 0%			0.4
romium	3	3	100%	0.27	0.70	0.2 0.4
pper	3	3	100%	0.79	0.70	0.9
anide, Total	3	١	0%	0.73	0.03	5.
ad	3	1	33%	0.25	0.25	0.2
rcury	3	3	100%	0.05	0.26	0.1
kel	3		0%	- 1		4.7
lenium	3)	0%	Ì	1	0.2
ver	3	J	0%			0.0
c .	3	3	100%	18	22	
maga		_ [1		
Lipids	3	3	100%	0.30	1,70	1.1
B, ug/kg cachlorobiphenyl	3				1	
hlorobiphenyt	3		0% 0%		1	_
ptachlorobiphenyl	3		0%	i	1	5.
kachlorobiphenyl	3]	2	67%)	43	52	
nochlorobiphenyl	3	- [0%	"]		5.
nachlorobiphenyl	3		0%			•
achlorobiphenyl	3	i	0%			
ntachlorobiphenyl	3	2	67%	33	52	
rachlorobiphenyl	3	l	0%	ŀ		
thlorobiphenyl	3	1	0%			5.
al PCBs	3	2	67%	76	102	
ticides, ug/kg			0/76		102	
-DOD	3		0%	1	l l	8.
-DDE	3	3	100%	3.4	29	٠.
-DDT	3		0%			8.
al DOT	3	3	100%	3	29	
in Chlorida	3		0%			4.
na Chlordane na-BHC	3	1	33%	12	12	7.
-BHC	3 3		0% 0%		1	4.1
a-BHC	3	1	0%	i	j	4. 4.
drin	3		0%		ł	8.
osulfan I	3	j	0%			4.0
osulfan II	3		0%			8.
osulfan sulfale	3		0%	1		8.
rin	3	l	0%	i	ł	8.
rin aldehyde	3	ļ	0%	1		8.0
rin ketone	3	. 1	0%	1		8.
nma Chlordane nma-BHC (Lindane)	3	1	33%	11	11	7.
tachlor	3	,	0% 33%	اءد	اء	4.
tachlor epoxide	3	'	33% 0%	2.8	2.8	3. 4.
hoxychior	3	i	0%	i		4.
phene	3	[0%	1	ľ	3
Cs, ug/kg						
I-Trichlorobenzene	3	[0%	- 1		
Dichlorobenzene	3		0%	1		
Dichlorobenzene	3		0%	1]	
Dichlorobenzene	3		0%	1		
Oxybis(1-chloropropane)(bis(2-Chlor	3		0%	- 1		_
-Trichlorophenol -Trichlorophenol	3	1	0%	1	1	2
o- i naniorophenoi Dichlorophenoi	3 3	l	0%	i		
Dimethylphenol	3	l	0% 0%			
Dinitrophenol	3		0%	1	1	3
Dinitrololuene	3		0%	1		2
Dinitrotokuene	3	l	0%	1	i	
nioronaphthalene	3	l	0%	1		
ilorophenal	3 (1	0%	- 1	- 1	
ethyl-4,6-dinitrophenol	3		0%	1	- 1	2
ethylnaphthalene	3	ľ	0%	1	1	-
ethylphenol (o-cresol)	3		0%	}	1	i
roaniline	3		0%			2
rophenol Methylphenol (m&p-cresol)	3		0%			2

Appendix C-3 Brown Bullhead Data Summary for Borrow Pit Lake Sauget Area I

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
1	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
3-Nitroaniline	3		0%			210
4-Bromophenylphenyl ether	3 3		0% 0%			85 85
4-Chloro-3-methylphenol 4-Chloroaniline	3		0%			85
4-Chlorophenylphenyl ether	3		0%			85
4-Nitroaniline	3		0%			210
4-Nitrophenol	3		0%			210
Acenaphthene] 3		0%			85
Acenaphthylene	3		0%			85
Anthracene	3		0%			85
Benzo(a)anthracene	3 3		0% 0%			85 85
Benzo(a)pyrene Benzo(b)fluoranthene	3		0%			85
Benzo(g,h,i)perylene	3		0%			85
Benzo(k)fluoranthene	3		0%			85
bis(2-Chloroethoxy)methane	3		0%			85
bis(2-Chloroethyl)ether	3 }		0%			85
bis(2-Ethylhexyl)phthalate	3	1	33%	97	97	89
Butylbenzylphthalale	3		0%			85
Carbazole	3 3		0% 0%			85 85
Chrysene Di-n-butylphthalate	3		0%			85 85
Di-n-octylphthalate	3		0%			85
Dibenzo(a,h)anthracene	3 1		0%	i		85
Dibenzofuran	3		0%			85
Diethylphthalate	3	1	33%	18	18	63
Dimethylphthalate	3		0%			85
Fluoranthene	3		0%			85
Fluorene	3		0%			85
Hexachlorobenzene	3		0%			85
Hexachlorobutadiene	3 3		0% 0%			85 85
Hexachlorocyclopentadiene Hexachloroethane	3		0%			85
Indeno(1,2,3-cd)pyrene	3		0%			85
Isophorone	l š		0%			85
n-Nitrosodi-n-propylamine	3		0%			85
N-Nitrosodiphenylamine/Diphenylamine	3		0%			85
Naphthalene	3		0%			85
Nitrobenzene	3		0%	ľ		127
Pentachlorophenol Phenanthrene	3 3		0% 0%			168 85
Phenol	3		0%			85
Pyrene	2		0%			85
F-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	_		1			-
Total PAHs	3		0%			8 <u>5</u>
Dioxins and Furans, ug/kg						
1,2,3,4,6,7,8,9-OCDD	3	3	100%	0.0102	0.01145	0.0109
1,2,3,4,6,7,8,9-OCDF	3 3	3 3	100% 100%	0.0006\$5 0.0015	0.0012 0.003	0.000872 0.0022
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	3	1	33%	0.000545	0.000545	0.000382
1,2,3,4,0,7,6-HpCDF 1,2,3,4,7,8,9-HpCDF	3	'	0%	0.000345	5.000545	0.000308
1,2,3,4,7,8-HxCDD	3	1	33%	0.00018	0.00018	0.00026
1,2,3,4,7,8-HxCDF	3	3	100%	0.00059	0.0014	0.00099
1,2,3,6,7,8-HxCDD	3	3	100%	0.00078	0.0024	0.00153
1,2,3,6,7,8-HxCDF	3	1	33%	0.000245	0.000245	0.000232
1,2,3,7,8,9-HxCDD	3		0%			0.00025
1,2,3,7,8,9-HxCDF	3	1 2	33%	0.00069	0.00069	0.00041
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	3	3	100% 0%	0.00042	0.0011	0.00080 0.00016
2,3,4,6,7,8-HxCDF	3	2	67%	0.00016	0.00032	0.00019
2,3,4,7,8-PeCDF	3	3	100%	0.00077	0.00032	0.0013
2,3,7,8-TCDD	3	ž	67%	0.00033	0.000835	0.000555
2,3,7,8-TCDF	3	3	100%	0.0012	0.004	0.0028
2,3,7,8-TCDF	3	3)	100%	0.0016	0.0041	0.0030
Total HpCDD	3	3	100%	0.002	0.003	0.002516667
Total HpCDF	3	3	100%	0.0018	0.0051	0.003916667
Total HxCDD	3	3	100%	0.00078	0.0024	0.001576667
Total HxCDF	3	3	100%	0.0106	0.038	0.024433333
Total PeCDD	3	3	100%	0.00042	0.00118	0.0009
Total PeCDF Total TCDD	3 3	3 2	100% 67%	0.0187 0.00033	0.0491 0.0012	0.036616667 0.000676667
Iotal ICDF	3	3	100%	0.00033	0.0012	0.000676667
	3	ુ	10076	0.022	0.003	0.04000007

Reference Area Brown Bullhead Summary Statistics Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Averses
Compounds	Number Analyzed	Number Detected	Detection	Minimum Detected	Maximum Detected	Average Concentration
Herbicides, ug/kg			1			
2,4,5-T	3		0%	1		6.6
2,4,5-TP (Silvex) 2,4-D	3		0%			6.6 6.6
2,4-DB	3		0%			6.6
2,4-DB Dalapon	3		0%			133
Dicamba	3		0%			133
Dichloroprop	3		0%			6
Dinoseb	3		0%			6
MCPA[(4-chloro-2-methylphenoxy)-acetic a	3	1	33%	8600	8600	353
MCPP[2-(4-chloro-2-methylphenoxy)-propan	3		0%			133
Pentachlorophenol	3		0%			1
Metals, mg/kg		_				_
Aluminum	3	3	100%	5.9	66	3
Antimony	3 3		0%			0.0
Arsenic Beryllium	3		0%]	1.2 0.4
Cadmium	3		0%			0.4
Chromium	šl	3	100%	0.34	0.48	0.4
Copper	3	3	100%	1.00	1.10	1.0
Cyanide, Total	3 (0%	1.00	1*	5.0
ead	3	2	67%	0.18	0.23	0.2
Mercury	3	3	100%	0.05	0.10	0.0
lickel	3		0%		i	4.5
elenium	3	2	67%	0.48	0.50	0.4
Silver	3		0%	Į.		0.0
linc	3	3	100%	16	24	7
	اړ	_				
6 Lipids	3	3	100%	1.00	1.40	1.1
PCB, ug/kg Decachlorobiphenyl	3		0%	1	l	
Dichlorobiphenyl	3		0%	i	1	5.0
leptachlorobiphenyl	3		0%			5.0
lexachlorobiphenyl	3		0%			i
fonochlorobiphenyl	3		0%			5.0
lonachlorobiphenyl	3		0%	l		
Octachlorobiphenyl	3		0%	}		1
entachlorobiphenyl	3		0%			1
etrachlorobiphenyl	3		0%			_ 1
nchlorobiphenyl	3		0%			5.0
otal PCBs	3		0%			2
Pesticides, ug/kg					-	
,4'-DDD	3	2	67%	1.2	2	5.3
4'-DDE	3	3	100%	4.7	12	8.8
4'-DDT	3		0%	i		8.6
ldrin	3		0%			4.6
Ipha Chlordane	3	3	100%	1.1	2.5	1.5
Ipha-BHC	3		0%			4.6
eta-BHC	3		0%		ĺ	4.6
elta-BHC Heldrin	3 3	3	0% 100%	1.7	3.8	4.6
ndosulfan I	3	3	0%	1./	3.0	2.7 4.6
ndosulfan II	3	1	0%			6.6
ndosulfan sulfate	3		ŏ%			8.6
ndrin	3	1	33%	2.6	2.6	7.3
ndrin aldehyde	3	' 1	0%		0	8.6
ndrin ketone	3		0%			7.63
iamma Chlordane	3	2	67%	6.1	6.2	6.4
amma-BHC (Lindane)	3	2	67%	0.94	1.2	3.0
eptachlor	3		0%			4.6
eptachlor epoxide	3		0%	ì		4.6
lethoxychlor	3		0%	ļ		4
oxaphene VOCa water	3		0%			34
VOCs, ug/kg .2.4-Trichlorobenzene	3		0%			-
2,4-1 nchlorobenzene 2-Dichlorobenzene	3	1	0%			6
2-Dichlorobenzene 3-Dichlorobenzene	3	l	0%			6
4-Dichlorobenzene	3		0%			8
2'-Oxybis(1-chloropropane)(bis(2-Chlor	3		0%	ļ		6
4,5-Trichlorophenol	3	l	0%	İ		21
4,6-Trichlorophenol	3	l	0%			Ē
4-Dichlorophenol	3	ı	0%	}	1	8
4-Dimethylphenol	3	l	0%]		8
4-Dinitrophenol	3	j	0%	}		21
4-Dinitrotoluene	3	ſ	0%			6
6-Dinitrotoluene	3	I	0%	-		
Chloronaphthalene	3	l	0%	1	ļ	8
Chlorophenol	3	ĺ	0%		ļ	
Methyl-4,6-dinitrophenol	3	ļ	0%			2
Methylnaphthalene	3	i	0%		ļ	8
Methylphenol (o-cresol)	3	I	0%	1	i	
Nitroaniline	3		0%		[21
Nitrophenol	3	1	0%		J	8
4-Methylphenol (m&p-cresol)	3	I	0%			1
3'-Dichlorobenzidine	3	J	0%	1	I	

Appendix C-3 Reference Area Brown Bullhead Summary Statistics Sauget Area I

			ا _ ا			_
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
4-Bromophenylphenyl ether	3		0%	200000		85
4-Chloro-3-methylphenol	3		0%			85
4-Chloroaniline] 3		0%			85
4-Chlorophenylphenyl ether	3		0%			85
4-Nitroaniline	3		0%			210
4-Nitrophenol	3		0%			210
Acenaphthene	3		0%			85
Acenaphthylene	3		0%			85
Anthracene	3		0%			85
Benzo(a)anthracene	3 3		0%			85 85
Benzo(a)pyrene Benzo(b)fluoranthene	3		0% 0%			85
Benzo(g,h,i)perylene	3		0%			85
Benzo(k)fluoranthene	3		0%			85
bis(2-Chloroethoxy)methane	3		0%			85
bis(2-Chloroethyl)ether	3		0%		:	85
bis(2-Ethylhexyl)phthalate	3	2	67%	46	47	59
Butylbenzylphthalate	3	-	0%	.,	•	85
Carbazole	1 3		0%			85
Chrysene] 3		0%			85
Di-n-butylphthalate	3		0%			85
Di-n-octylphthalate	3		0%			85
Dibenzo(a,h)anthracene	3		0%			85
Dibenzofuran	3		0%			85
Diethylphthalate	3	1	33%	25	25	65
Dimethylphthalate	3		0%			85
Fluoranthene	3		0%			85
Fluorene	3		0%			85
Hexachlorobenzene	3 3		0%			85 85
Hexachlorobutadiene Hexachlorocyclopentadiene	3		0% 0%			85
Hexachloroethane	3		0%			85
indeno(1,2,3-cd)pyrene	3		0%			85
Isophorone	3		0%			85
n-Nitrosodi-n-propylamine	3	ļ	0%			85
N-Nitrosodiphenylamine/Diphenylamine	3	j	0%			85
Naphthalene	3	j	0%			85
Nitrobenzene	3	j	0%			127
Pentachlorophenol	3	i	0%			168
Phenanthrene	3	ł	0%			85
Phenol	3		0%			85
Pyrene	2		0%			85
Total PAHs	ļ					
Dioxins and Furans, ug/kg 1,2,3,4,6,7,8,9-OCDD	3	3	100%	0.00270	0.0208	0.0147
1,2,3,4,6,7,8,9-OCDF	3	2	67%	0.00270	0.0208	0.000840
1,2,3,4,6,7,8-HpCDD	3	3	100%	0.000320	0.00300	0.00040
1,2,3,4,6,7,8-HpCDF	3	۱	0%	0.000010	0.00300	0.000167
1,2,3,4,7,8,9-HpCDF	3		0%			0.000200
1,2,3,4,7,8-HxCDD	1 3		0%	l		0.000167
1,2,3,4,7,8-HxCDF	1 3	3	100%	0.000260	0.000490	0.000410
1,2,3,6,7,8-HxCDD	1 3	3	100%	0.000390	0.00120	0.000737
1,2,3,5,7,8-HxCDF	3	Į.	0%			0.000117
1,2,3,7,8,9-HxCDD] 3		0%			0.000167
1,2,3,7,8,9-HxCDF	3		0%			0.000133
1,2,3,7,8-PeCDD] 3		0%			0.000183
I,2,3,7,8-PeCDF] 3		0%			0.000117
2,3,4,6,7,8-HxCDF	3	1	0%			0.000117
2,3,4,7,8-PeCDF	3	11	33%	0.000330	0.000330	0.000177
2,3,7,8-TCDD	3	2	67%	0.000200	0.000420	0.000290
2,3,7,8-TCDF	3	1	33%	0.000750	0.000750	0.000317
Total HpCDD	3	3	100%	0.000810	0.003600	0.00034
Total HpCDF	3	2	67%	0.00130	0.00140	0.000933
Total HxCDD Total HxCDF	3 3	3	100%	0.000390	0.00120	0.000737
Total PeCDD] 3	3	100%	0.00330	0.00810	0.00633 0.000183
		_ [0.00070	0.04000	
Intal PeCDE	1 2 1	2 1				
otal PeCDF	3 3	3 3	100%	0.00970	0.01830	0.01443
Fotal PeCDF Fotal TCDD Fotal TCDF	3 3 3	3 3 3	100% 100% 100%	0.00970 0.000200 0.00850	0.01830 0.000930 0.02530	0.01443 0.000647 0.01620

Borrow Pit Lake Forage Fish Data Summary Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentratio
Herbicides, ug/kg 2,4,5-T (ug/kg)	3		0%	1		6.6
2,4,5-TP (Silvex)	3		0%	l		6.6
2,4-D	3		0%			6.6
2.4-DB	3	2	67%	6.5	10	8.8
Dalapon	š	-	0%	5.5		133
Dicamba	3	1	33%	2.6	2.6	1.
Dichloroprop	3	1	33%	6.7	6.7	
Dinoseb	3		0%	1		
MCPA[(4-chloro-2-methylphenoxy)-	3	2	67%	3100	3300	280
MCPP[2-(4-chloro-2-methylphenoxy)-	3	_	0%			133
Pentachiorophenol	3	2	67%	1	2.2	7.7
Vetals, mg/kg	3	3	100%	24	52	
Numinum Antimony	3	3	0%	24	52	0.6
Arsenic	3		0%			1.3
Beryllium	3		0%			0.4
Cadmium	3		0%			0.2
Chromium	3	3	100%	0.26	0.32	0.3
Copper	3]	3	100%	0.5	1.7	0.9
Cyanide, Total	3		0%			5.0
ead	3	1	33%	0.59	0.59	0.3
Mercury	3	2	67%	0.052	0.6	0.2
Nickel	3		0%			4.7
Selenium	3	2	67%	0.53	0.54	0.4
Silver	3		0%	_		0.0
Zinc	3	3	100%	24	33	
Kill helde	ا ۽	_	4000	اء د	4.	
% Lipids PCB, ug/kg	3	3	100%	1.5	1.8	1.6
Decachlorobiphenyl	3		0%			
Dichlorobiphenyl	3		0%			8.3
Heptachlorobiphenyl	3		ŏ%			0
lexachlorobiphenyl	3	2	67%	19	22	
Monochlorobiphenyl	3	-	0%			8.3
Nonachlorobiphenyl	3		0%			4
Octachlorobiphenyl	3	i	0%			2
Pentachlorobiphenyl	3	1	33%	8.7	8.7	1
Tetrachlorobiphenyl	3		0%			1
Frichlorobiphenyl	3	ì	0%			8.3
	_ [
Total PCBs	3	2	67%	31	39	3
Pesticides, ug/kg I.4'-DDD	3		0%			
1.4'-DDE	3	3	100%	4.1	10	8. 7.7
I,4'-DDT	3	۱ ۱	0%	7.'	''	8.8
Total DDT	3	3	100%	4.1	10	7.7
Udrin	3	-	0%			4.4
Upha Chlordane	3		0%			4.4
ipha-BHC	3		0%			4.4
ela-BHC	3		0%	1	1	4.4
elta-BHC	3		0%	1		4.4
Neldrin	3		0%	i		8.8
ndosulfan I	3]	0%			4.4
ndosulfan II	3	1	0%	1		8.8
ndosulfan sulfate	3	1	0%	1		8.8
indrin Indrin aldehyde	3 3		0%	ŀ		8.6
	- 1	ļ	0%	1		8.8
Indrin ketone Samma Chlordane	3 3	l	0% 0%	1	[8.8 4.4
amma-BHC (Lindane)	3	l	0%			4.4
leptachlor	3	l	0%	l		4.4
leptachlor epoxide	3	,	0%			4.4
fethoxychlor	š	ļ	0%	1		7.7
oxaphene	3		0%			44
VOCs, ug/kg						
,2,4-Trichlorobenzene	3		0%	1		14
,2-Dichlorobenzene	3	l	0%	1		14
,3-Dichlorobenzene	3	l	0%			14
4-Dichlorobenzene	3		0%			14
,2'-Oxybis(1-chloropropane)(bis(2-	3	l	0%	-		14
4.5-Trichlorophenol	3	l	0%	İ		35
4,6-Trichlorophenol	3		0%	İ		14
,4-Dichlorophenol	3	Į	0%)			14
,4-Dimethylphenol	3	1	0%	1	1	14
4-Dinitrophenol	3	l	0%	1		35
,4-Dinitrotoluene ,6-Dinitrotoluene	3 3		0% 0%	1		14
-Chloronaphthalene	3		0%			14
-Chiorophenol	3		0%			14
-Chiorophenol -Methyl-4,6-dinitrophenol	3	l	0%			35
-Methylnaphthalene	3	- 1	0%	j		14
-Methylphenol (o-cresol)	3	ĺ	0%		1	14
-Nitroaniline	3		0%			35
-Nitrophenol	3		0%			14
&4-Methylphenol (m&p-cresol)	3	l	0%	ļ		14
			Ų /6		1	

Appendix C-3 Borrow Pit Lake Forage Fish Data Summary Sauget Area I

0	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
3-Nitroaniline	3		0%	1		350
4-Bromophenylphenyl ether	3		0%			142
4-Chioro-3-methylphenol	3		0%			142
4-Chloroaniline	3		0%			142
4-Chlorophenylphenyl ether	3		0%			142
4-Nitroaniline	3		0%	į		350
4-Nitrophenol	1 3 1	1	0%		1	350
Acenaphthene	1 3		0%			142
Acenaphthylene	3 1		0%			142
Anthracene	3	i	0%			142
Benzo(a)anthracene	3		0%	İ		142
			0%			142
Benzo(a)pyrene	3					
Benzo(b)fluoranthene	3		0%			142
Benzo(g,h,i)perylene] 3]		0%	J		147
Benzo(k)fluoranthene] 3 [0%[142
bis(2-Chloroethoxy)methane] 3		0%			142
bis(2-Chloroethyl)ether	3		0%			142
bis(2-Ethylhexyl)phthalate	3	2	67%	150	230	183
Butylbenzylphthalate	1 3		0%			142
Carbazole	ا ق		0%			142
Chrysene	3		0%			143
Orrysene Di-n-bulyiphthalate	3		0%			142
				ſ		
Di-n-octylphthalate	3	_	0%			142
Dibenzo(a,h)anthracene] 3	1	33%	48	48	101
Dibenzofuran	3		0%			142
Diethylphthalate	3	3	100%	19	37	31
Dirnethylphthalate	3		0%	Į.		142
luoranthene	3		0%			142
luorene	ا ق		0%			142
lexachlorobenzene	3		0%			142
lexachlorobutadiene	3		0%	J		142
				1		
lexachlorocyclopentadiene	3		0%	1		142
lexachloroethane	3	_	0%			142
ndeno(1,2,3-cd)pyrene	3	1	33%	54	54	103
sophorone	3		0%			142
n-Nitrosodi-n-propylamine	3		0%			142
N-Nitrosodiphenylamine/Diphenylamine	3		0%			142
Naphthalene	3		0%			142
Vitrobenzene	3		0%	i i		142
Pentachlorophenol	3		0%	1		350
henanthrene	3		0%			142
henol	3		0%			142
			0%			
yrene	3		U76			142
otal PAHs	3	1	33%	102	102	360
Dioxins and Furans, ug/kg			3376	102	102	300
	اءا	э	100%	0.0089	0.0269	0.019866667
,2,3,4,6,7,8,9-OCDD	3					
2,3,4,6,7,8,9-OCDF	3	2	67%	0.0013	0.0044	0.002083333
,2,3,4,6,7,8-HpCDD	3	3	100%	0.0012	0.0018	0.001533333
.2,3,4,6,7,8-HpCDF	3	1	33%	0.001	0.001	0.000483333
,2,3,4,7,8,9-HpCDF	3	1	33%	0.00058	0.00058	0.000443333
,2,3,4,7,8-HxCDD	3		0%	İ		0.0002
,2,3,4,7,8-HxCDF	3	2	67%	0.00041	0.00077	0.00046
,2,3,6,7,8-HxCDD	3	ĭ	33%	0,0006	0.0006	0.00035
,2,3,6,7,8-HxCDF	3		0%	0.0000	0.0000	0.000116667
	3	[0%	ſ	1	0.000216667
,2,3,7,8,9-HxCDD		-				
,2,3,7,8,9-HxCDF	3	ł	0%]	}		0.000183333
,2,3,7,8-PeCDD	3		0%(0.000216667
,2,3,7,8-PeCDF	3	ŀ	0%			0.000133333
,3,4,6,7,8-HxCDF	3		0%			0.000133333
,3,4,7,8-PeCDF	3	1	33%	0.00046	0.00046	0.00027
10,7,7,01 6001	3	1	33%	0.00072	0.00072	0.00039
		3	100%	0.004	0.00725	0.005216667
,3,7,8-TCDD					0.0028	0.002
3,7,8-TCDD 3,7,8-TCDF	3		100%			
,3,7,8-TCDD ,3,7,8-TCDF otal HpCDD	3	3	100%	0.0012		
,3,7,8-TCDD ,3,7,8-TCDF otal HpCDD otal HpCDF	3 3 3	3	100%	0.0018	0.0067	0.003
.3.7.8-TCDD .3.7.8-TCDF otal HpCDD otal HpCDF otal HxCDD	3 3 3 3	3 3 1	100% 33%	0.0018 0.0006	0.0067 0.0006	0.0035 0.000366667
,3,7,8-TCDD ,3,7,8-TCDF otal HpCDD otal HpCDF otal HxCDD otal HxCDD	3 3 3 3 3	3	100% 33% 100%	0.0018	0.0067	0.0035 0.000366667 0.009366667
3.7.8-TCDD 3.7.8-TCDF otal HpCDD otal HpCDF otal HxCDD otal HxCDF otal PeCDD	3 ; 3 ; 3 ; 3 ; 3 ;	3 3 1 3	100% 33% 100% 0%	0.0018 0.0006 0.0072	0.0067 0.0006 0.0136	0.0035 0.000366667 0.009366667 0.000216667
.3.7.8-TCDD .3.7.8-TCDF otal HpCDD otal HpCDF otal HxCDD otal HxCDF otal PcCDD	3 3 3 3 3	3 3 1 3	100% 33% 100% 0% 100%	0.0018 0.0006 0.0072 0.0085	0.0067 0.0006 0.0136 0.0189	0.0036666 0.00036666 0.00936666 0.00021666 0.01266666
3.7.8-TCDD 3.7.8-TCDF otal HpCDD otal HpCDF otal HxCDD otal HxCDF otal PeCDD	3 ; 3 ; 3 ; 3 ; 3 ;	3 3 1 3	100% 33% 100% 0%	0.0018 0.0006 0.0072	0.0067 0.0006 0.0136	0.003 0.00036666 0.00936666 0.00021668

Reference Area Forage Fish Sauget Area I

Compounds	Number	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average
Compounds Herbicides, ug/kg	Analyzed	Detected	Detection	Detected	Detected	Concentration
2,4,5-T	4		0%	1		5.0
2.4.5-TP (Silvex)	4		0%			5.0
2,4-0	4	4	0%	10	40	5.0
2,4-DB Dalapon	4	1	25% 0%	10	10	6.2 100
Dicamba	4		0%	l		1
Dichloroprop	4	1	25%	5.1	5.1	3
Dinoseb	4		0%			5
MCPA((4-chloro-2-methylphenoxy)-acetic a	41	1	25%	2400	2400	135
MCPP(2-(4-chloro-2-methylphenoxy)-propan Pentachlorophenol	4 4	2	0% 50%	1.5	2.2	100 4.2
Metals, mg/kg			30%	1.5	2,2	
Aluminum	4	4	100%	8.3	100	
Antimony	4		0%			0.0
Arsenic	4		0%			1.3
Beryllium	4		0%	ļ		0.4
Cadmium	4	4	0% 100%	0.24	4.9	0.2 0.7
Copper	4	4	100%	0.42	1.7 0.75	0.7
Cyanide, Total	4	•	0%	0.42	0.75	5.0
ead	4	1	25%	0.37	0.37	0.2
Mercury	4	4	100%	0.046	0.064	0.0
Nickel	4		0%			4.6
Selenium	4	2	50%	0.56	0.65	0.4
Silver	41	4	100%	17		0.0
Zinc	4	4	100%	1/	33	2
K Lipids	4	4	100%	1	2.6	1.6
PCB, ug/kg			- 100 70			1.0
Decachlorobiphenyl	4		0%			4
Dichloroblphenyl	4		0%	1		8.7
leptachlorobiphenyl	4		0%			2
lexachlorobiphenyl Monochlorobiphenyl	4		0% 0%		l	1 8.7
Ionachlorobiphenyl	41		0%			4
Octachlorobiphenyl	4		0%		i	2
Pentachlorobiphenyl	4		0%	1		1
etrachlorobiphenyl	4	ĺ	0%	1	i	_ 1
richlorobiphenyl	4		0%			8.7
Total PCBe	ŀ	ĺ	}			
esticides, ug/kg						
,4'-DDD	3		0%			8.8
4'-DDE	3	2	67%	1.3	3.5	4.9
4'-DDT	3		0%			8.8
Ndrin Chipetone	3 3		0% 0%			4.4
lpha Chlordane	3		0%			4.4 4.4
eta-BHC	3		0%			4.4
lelta-BHC	3	ì	0%	i	1	4.4
Dieldrin	3	2	67%	1.6	4.7	5.4
ndosulfan I	3		0%	i		4.4
ndosulfan II	3		0%	- 1		8.8
ndosulfan sulfale	3 3		0% 0%	1		8.8 8.8
ndrin aldehyde	3	ŀ	0%	1		8.8 8.8
ndrin ketone	3		0%	l		8.8
Samma Chlordane	3	1	33%	1.2	1.2	3.2
amma-BHC (Lindane)	3	1	0%	7		4.4
leptachlor	3		0%	1		4.4
leptachlor epoxide	3		0%			4.4
lethoxychlor oxaphene	3 3		0% 0%	1		44
VOCs, ug/kg						
,2,4-Trichlorobenzene	4		0%			10
,2-Dichlorobenzene	4		0%	- 1	1	10
,3-Dichlorobenzene	4		0%			10
4-Dichlorobenzene	41		0%	- 1		10
,2'-Oxybis(1-chloropropane)(bis(2-Chlor	4		0%	1]	10
4,5-Trichlorophenol	4		0%	1	1	26
4,6-Trichlorophenol 4-Dichlorophenol	4		0% 0%	ŀ	1	10 10
4-Dichiolophenol	4	ł	0%	l		10
4-Dinitrophenol	4]	0%	1	}	26
,4-Dinitrotoluene	4		0%			10
,6-Dinitrotoluene	4		0%			10
-Chioronaphthalene	4		0%	1		10
Chlorophenol	4	[0%	1	ļ	10
-Methyl-4,6-dinitrophenol	4		0%	1		26
Methylnaphthalene	1	ľ	0%	ł	1	10
-Methylphenol (o-cresol)	4	!	0%	l	Ì	10
-Nitroaniline -Nitrophenol	4]	0% 0%	ŀ	1	26 10
&4-Methylphenol (m&p-cresol)	4		0%	1	f	10
3'-Dichlorobenzidine	4	1	0%	1		10

Appendix C-3 Reference Area Forage Fish Sauget Area I

	[
Companyada	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds 4-Bromophenylphenyl ether	Analyzed	Detected	Detection	Detected	Detected	Concentration 106
4-Chloro-3-methylphenol	1 71		0% 0%			106
4-Chloroaniline	1 71		0%			106
4-Chlorophenylphenyl ether	1 71		0%			106
4-Nitroaniline	1 4		0%			263
4-Nitrophenol	1 71		0%			263
Acenaphthene] 4]		0%			106
Acenaphthylene	1 41		0%			106
Anthracene	[1		0%			106
Benzo(a)anthracene	1 41		0%			106
Benzo(a)pyrene	1 41		0%			106
Benzo(b)fluoranthene	1 41		0%			106
Benzo(g,h,i)perylene] [0%			106
Benzo(k)fluoranthene	1 11		0%			106
bis(2-Chloroethoxy)methane	4		0%			106
bis(2-Chloroethyl)ether	4		0%			106
bis(2-Ethylhexyl)phthalate	1 71	4	100%	99	280	172
Butylbenzylphthalate	4	•	0%	33	200	106
Carbazole] 3		0%			113
Chrysene	1 41		0%			106
Oi-n-butylphthalate	4		0%			106
Di-n-octylphthalate	1		0%			106
			0%			106
Dibenzo(a,h)anthracene Dibenzofuran	1		0%			106
] []	3	75%	18	37	61
Diethylphihalate	1	3	0%	101	3/	106
Dimethylphthalate Fluoranthene	2		0%			106
Fluorene	1 7					106
Hexachlorobenzene	1 2	i	0%		'	106
Hexachlorobutadiene	1 21	1	0% 0%			106
Hexachlorocyclopentadiene	21		0%	ļ		
Hexachloroethane		l				106
	1		0%			106 106
Indeno(1,2,3-cd)pyrene			0%	i		
Isophorone	11		0%			106
n-Nitrosodi-n-propylamine	4		0%			106
N-Nitrosodiphenylamine/Diphenylamine	4		0%			106
Naphthalene	4		0%	[106
Nitrobenzene Pentachlorophenol	4		0% 0%	į		106 263
Phenanthrene	21		0%	i		106
Phenol	41		0%			106
	71		0%			106
Pyrene	7		U76			100
Total PAHs	ĺ					
Dioxins and Furans, ug/kg 1,2,3,4,6,7,8,9-OCDD	4	4	100%	0.0223	0.068	0.04155
1,2,3,4,6,7,8,9-OCDF	- 1	3	75%	0.0223	0.068	0.005325
	- 1	4	100%	0.0014	0.018	
1,2,3,4,6,7,8-HpCDD	4	71	25%	0.0018	0.0047	0.00325 0.0005125
1,2,3,4,6,7,8-HpCDF	21	' 1	23% 0%	0.0016	0.0016	0.0003125
1,2,3,4,7,8,9-HpCDF	1		0%]		0.000275
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	1	3	75%	0.00023	0.00057	
1,2,3,4,7,8-HxCDF	,	3	100%	0,00044	0.00067	0.0003375 0.0005875
	11	• 1		0,00044	Ų.Ų UU 67	0.0005875
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	21	j	0% 0%			
	:	1	0%			0.0002125 0.0001625
I,2,3,7,8,9-HxCDF I,2,3,7,8-PeCDD	3 1	ا،	25%	0.00095	0.00095	0.0001625
1,2,3,7,8-PeCDF	3 1	1	25% 0%	0,00095	0.00095	
2,3,4,6,7,8-HxCDF	- 1		0%			0.00015 0.0001375
				ļ		
2,3,4,7,8-PeCDF 2,3,7,8-TCDD	31	3	0% 75%	0.00046	0.00086	0.0001625 0.0005125
378.TCDE	- 11		75%			
2,3,7,8-TCDF	- 11	3	75%	0.00095	0.0029	0.000301
Total HpCDD		4	100%	0.0023	0.0074	0.0049
Total HpCDF		2	50%	0.0015	0.0067	0.002175
Total HxCDD	41	4	100%	0.00058	0.0016	0.0008775
Total HxCDF	4	4	100%	0.0017	0.0073	0.003775
otal PeCDD	4 [25%	0.00095	0.00095	0.000375
otal PeCDF	4	4	100%	0.0062	0.012	0.009325
Total TCDD	4	3	75%	0.00048	0.0012	0.0007
rotal TCDF	4	4	100%	0.0107	0.0182	0.013425

Combined Summary Statistics for Largemouth Bass and Brown Bullhead Borrow Pit Lake Sauget Area I

Compounds			Sauget A	rea i	,		·
Herbickles, uptq 2	Compounds						Average Concentration
2.4.5-T (Gilvay) 6 0 0% 2.4.5-TP (Sinvay) 6 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0				Detection	Seracion	Decercied_	
2.4-D6							5.00
22-DB 6							5.00
Delippon 6					'	Ì	5.00 5.00
Diciminary						ŀ	1000
Dichloropicy Dichl			1		1.90	1.90	6.98
MCPAI(-Check-careetypelenexy)							4
MCPPI2-(4-chistro-2-methylphenous)							54
Matala, mg/kg Adlimorty 6	MCPP(2-(4-chloro-2-methylphenoxy)-	6	1	0%	1,800.00	1,800.00	1133 1000
Alimentum 6 6 5 03% Arsenic 6 0 0% A				0%			8.3
Animony 6 6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%		6	5	83%	7.70	33.00	1
Arsenic			•				0.09
Cadmum 6							2.30
Chromum Copper C							0.47
Copper 6			_				0.23
Cyanide, Total 6 1 17% 0.25 0.25 0.26 0 Mercury 6 5 5 83% 0.05 0.25 0.25 0 0.25							0.53
Lied 6			6		0.41	0.89	0.69 5.00
Microary 6 5 83% 0.05 0.26 0.55 0.5			1		0.25	0.25	0.24
Sicher							0.09
Selentum 6		6			5.55		4.70
St. Lipid 6 6 100% 15.00 22.00		6	2	33%	0.60	0.63	0.36
Ki Lipid CRB, up/Kg CR							0.05
PCB_up/kg Decachisrobiphenyl Dichicrobip	Zinc	6	6	100%	15.00	22.00	18
PCB_up/kg Decachisrobiphenyl Dichicrobip	& Liold	اء	e l	100%	0.30	1 80	1.37
Decadinospheny 6				10076	0.00	1.30	1.3/
Dichicrobipheny		6		0%			25
Fessenthorobipheny		6					5.00
Monochlorobipheny 6			2				16
Conschiron Con			5		43.00	150.00	70
Disactinophipmy 6 5 83% 30.00 130.00 retrachlorobipheny 6 5 83% 30.00 130.00 retrachlorobipheny 6 2 33% 19.00 46.00 75. 75. 75.00 75. 75. 75.00 75.							5.00
Fernischiorobipheny 6							25
Terrachlorobiphenyl 6			أء		30.00	130.00	15 61
Frichicrobipheny							18
Total PCBs			- 1			.5.50	5.00
Pesticides, ug/kg			l	1			
(4-DDD 6 5 83% 3.40 29.00 7 4.4-DDE 6 5 83% 3.40 29.00 7 4.4-DDE 6 5 83% 3.40 29.00 7 4.4-DDE 6 5 83% 3.40 29.00 7 4.4-DDE 7 7 7 7 7 7 7 7 7		6	5	83%	76.00	320.00	150
14-DDE		اء		001		l	7.58
Circle DOT			اء		340	20.00	7.58 16
Cital DOT			"		3,40	25.00	7.58
Martin			5		3.40	29.00	16
Alpha BHC 6	Ndrin	6		0%			4.00
Sella-BHC 6 0% 4 4			1		12.00	12.00	5.43
India Indi			l		ì	İ	4.00
Dieldrin					l		4.00
Endosulfan II			ſ			i	4.00 7.58
Endosulfan II							7.58 4.00
Indoosulfan sulfate			J				7.58
Endrin 6 0% 7.			ļ		ļ		7.58
Indin aldehyde	indrin	6					7.58
Samma Chlordane		6	ļ	0%			7.58
Imministration 6			ſ			l	7.58
Implication February Februa			3		11.00	19.00	9.80
Implaction Imp			اء		4 50	امد	4.00 2.98
Sethoxychlor			2		1.50	2.80	2.98 4.00
Display Disp			ļ				4.00
VOCs, ug/kg			i				343
2.4-Trichlorobenzene 6 2Dichlorobenzene 6 3-Dichlorobenzene 6 4-Dichlorobenzene 6 4-Dichlorophenol 6 4.5-Trichlorophenol 6 4.5-Trichlorophenol 6 4-Dinditryphenol 6 4-Dinitryphenol 6 4-Dinitrophenol 6 4-Dinitrophenol 6 6-Dinitrotoluene 6 6-Dinitrotoluene 6 6-Dinitrotoluene 6 Chioronaphthalene 6 Chiorophenol 6 Methyl-4-6-dinitrophenol 6 Methyl-4-6-dinitrophenol 6 Methyliphenol (o-cresol) 6 Nitrophenol 6 Nitrophenol 6							
3-Dichlorobenzene 6 0% 4-Dichlorobenzene 6 0% 2-Oxybis(1-chloropropane)(bis(2-6) 0% 4-5-Trichlorophenol 6 0% 4-5-Trichlorophenol 6 0% 4-Dichlorophenol 6 0% 4-Dimethylphenol 6 0% 4-Dimitrophenol 6 0% 4-Dimitrophenol 6 0% 6-Dimitrotoluene 6 0% 6-Dinitrotoluene 6 0% Chlorophenol 6 0% 6-Dinitrotoluene 6 0% Chlorophenol 6 0% 6-Dinitrotoluene 6 0% Chlorophenol 6 0% Methyl-4-6-dinitrophenol 6 0% Methyl-1-6-dinitrophenol 6 0% Meth	,2,4-Trichlorobenzene		1				85
4-Dichlorobenzene			1				85
2-Oxybis(1-chloropropane)(bis(2-							85
4.5-Trichlorophenol 6 0% 4.6-Trichlorophenol 6 0% 4-Dichlorophenol 6 0% 4-Dimethylphenol 6 0% 4-Dinitrophenol 6 0% 4-Dinitrotoluene 6 0% 6-Dinitrotoluene 6 0% Chioronaphthalene 6 0% Chiorophenol 6 0% Methyl-4.6-dinitrophenol 6 0% Methylphaphthalene 6 0% Methylphenol (o-cresol) 6 0% Nitrophenol 6 0% Nitrophenol 6 0%			l				65
4.6-Trichtorophenol 6 0% 4-Dichtorophenol 6 0% 4-Dinitrylphenol 6 0% 4-Dinitrotoluene 6 0% 5-Dinitrotoluene 6 0% 6-Dinitrotoluene 6 0% Chioronaphthalene 6 0% Chiorophenol 6 0% Methyl-4.6-dinitrophenol 6 0% Methylaphthalene 6 0% Methylaphenol (o-cresol) 6 0% Nitrophenol 6 0% Nitrophenol 6 0%			ľ				85 210
4-Dichlorophenol 6 4-Dimitrylphenol 6 4-Dimitrolouene 6 4-Dinitrolouene 6 6-Dinitrolouene 6 6-Dinitrolouene 6 Chiorophenol 6 Chiorophenol 6 Methyl-4,6-dinitrophenol 6 Methyl-4,6-dinitrophenol 6 Methylphenol (o-cresol) 6 Methylphenol (o-cresol) 6 Nitrophenol 6 Nitrophenol 6 Nitrophenol 6			i				210 85
4-Dimethylphenol 6 0% 4-Dinitrophenol 6 0% 4-Dinitrotoluene 6 0% 6-Dinitrotoluene 6 0% Chioronaphthalene 6 0% Chiorophenol 6 0% Methyl-4.6-dinitrophenol 6 0% -Methyl-sphenol 6 0% -Methylphenol 6 0% -Nitrophenol 6 0% -Nitrophenol 6 0%			l			ŀ	85
4-Dinitrotoluene 6 0% 6-Dinitrotoluene 6 0% Chloronaphthalene 6 0% Chlorophenol 6 0% Methyl-4,6-dinitrophenol 6 0% Methylaphthalene 6 0% Methylphenol (o-cresol) 6 0% Nitrophenol 6 0% Nitrophenol 6 0%			ļ			ŀ	85
S-Dinitrotoluene			Ì		ľ	\ \ \ \ \ \	210
Chloronaphthalene 6 0% Chlorophenol 6 0% Methyl-4.6-dinitrophenol 6 0% Methylophenol (o-cresol) 6 0% Methylophenol (o-cresol) 6 0% Nitrophiline 6 0% Nitrophenol 6 0%			I				85
Chlorophenol 6 0% Methyl-4.6-dinitrophenol 6 0% -Methylphanolthalene 6 0% -Methylphenol (o-cresol) 6 0% -Nitrophenol 6 0%			l				85
Methyl-4,6-dinitrophenol 6 0% Methylnaphthalene 6 0% Methylphenol (o-cresol) 6 0% Nitrophenol 6 0% Nitrophenol 6 0%			\ -		ļ		85
Methyliaphthalene 6 0% Methyliphenol (o-cresol) 6 0% Nitrophienol 6 0% Nitrophenol 6 0%			J				85
Methylphenol (o-cresol)			1				210
-Nitroaniline 6 0% - Nitrophenol 6 0%							85 85
-Nitrophenol 6 0%			İ			İ	210
			1				85
entrine and programment of the control of the contr	&4-Methylphenol (m&p-cresol)	ĕ	ļ	ŏ%	i		85

Appendix C-3 Combined Summary Statistics for Largemouth Bass and Brown Bullhead Borrow Pit Lake Sauget Area I

						
	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
3,3'-Dichlorobenzidine 3-Nitroaniline	6 6		0%			85 210
4-Bromophenylphenyl ether	6		0%			85
4-Chloro-3-methylphenol	6		0%			85
4-Chloroaniline	6		0%			85
4-Chlorophenylphenyl ether	6		ا مُوْدَ ا			85
4-Nitroaniline	6		0%			210
4-Nitrophenol	6		0%			210
Acenaphthene	6		0%			85
Acenaphthylene	6		0%			85
Anthracene	6		0%			85
Benzo(a)anthracene	6		0%			85
Benzo(a)pyrene	6		0%			85
Benzo(b)fluoranthene	6		0%			85 85
Benzo(g,h,i)perylene Benzo(k)fluoranthene	6		0% 0%			85 85
	6		0%			85
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	6		0%			85
bis(2-Ethylhexyl)phthalate	6	1	17%	97.00	97.00	90
Butylbenzylphthalate	6	•	0%]	57.50	37.30	85
Carbazole	6		0%			85
Chrysene	ě		0%			85
Di-n-butylphthalate	6	1	17%	32.00	32.00	76
Di-n-octylphthalate	6		0%			85
Dibenzo(a,h)anthracene	6		0%			85
Dibenzofuran	6		0%			85
Diethylphthalate	6	1	17%	18.00	18.00	74
Dimethylphthalate	6		0%			85
Fluoranthene	6		0% 0%			85 85
Fluorene Hexachlorobenzene	° 6		0%			85 85
Hexachlorobutadiene	ő		0%			85 85
Hexachlorocyclopentadiene	6		0%			85
Hexachloroethane	6		0%			85
Indeno(1,2,3-cd)pyrene	6		0%			85
Isophorone	6		0%			85
n-Nitrosodi-n-propylamine	6		0%			85
N-Nitrosodiphenylamine/Diphenylamine	6		0%			85
Naphthalene	6	ł	0%			85
Nitrobenzene	6		0%			106
Pentachlorophenol	6		0%			189
Phenanthrene Phenol	6	ļ	0% 0%			85 85
Pyrene	5		0%			85 85
, yielle	٦,		٠~١			~
Total PAHs	6	- 1	0%			85
Dioxins and Furans, ug/kg						
1,2,3,4,6,7,8,9-OCDD	6	3	50%	0.0102	0.01145	0.008708333
1,2,3,4,6,7,8,9-OCDF	6	3	50%	0.000655	0.0012	0.000960833
1,2,3,4,6,7,8-HpCDD	6	3	50%	0.0015	0.003	0.00155
1,2,3,4,6,7,8-HpCDF	6	1 J	17%	0.000545	0.000545	0.000240833
1,2,3,4,7,8,9-HpCDF	6		.0%			0.0002375
1,2,3,4,7,8-HxCDD	6	1	17%	0.00018	0.00018	0.000205
1,2,3,4,7,8-HxCDF	6	4 4	67% 67%	0.00048 0.00054	0.0014 0.0024	0.000614167 0.00091
1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF	6	2	33%	0.00034	0.0024	0.0001875
1,2,3,7,8,9-HxCDD	6	- 1	0%	0.00023	0.000243	0.000191667
1,2,3,7,8,9-HxCDF	6	1 1	17%	0.00069	0.00069	0.000151007
1,2,3,7,8-PeCDD	6	4]	67%	0.00042	0.0011	0.000649167
1,2,3,7,8-PeCDF	6	1	17%	0.0011	0.0011	0.0002775
2,3,4,6,7,8-HxCDF	6	3	50%	0.00016	0.00038	0.000251667
2,3,4,7,8-PeCDF	6	5	83%	0.00071	0.0016	0.000985
2,3,7,8-TCDD	6	4	67%	0.00033	0.0009	0.000644167
2,3,7,8-TCDF	6	6	100%	0.0012	0.0114	0.006045833
Total HpCDD	6	5	83%	0.0014	0.003	0.001975
Total HpCDF	6	4	67%	0.0018	0.0067	0.004141667
Total HxCDD		4	67%	0.00054	0.0024	0.001028333
FAIAL HACCE		~ !				
Total HxCDF	6	3	50%	0.0106	0.038	0.020591667
Total PeCDD	6 6	4	67%	0.00042	0.00118	0.000700833
	6					0.020591667 0.000700833 0.02785 0.00063

Creek Sector F Plant Tissue Summary Statistics Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Herbicides, ug/kg			-			
2,4,5-T (ug/kg) 2,4,5-TP (Silvex)	2 2		0% 0%			5.00 5.00
2,4,5-1 F (Silvex)	2		0%			5.00
2,4-DB	2		0%			5.00
Dalapon	2		0%			1000
Dicamba	2		0%	_	_	10
Dichloroprop Dinoseb	2 2	1	50% 0%	7	7	29 50
MCPA[(4-chioro-2-methylphenoxy)-	2		0%			1000
MCPP[2-(4-chloro-2-methylphenoxy)-	2		0%			1000
Pentachiorophenol	2		0%			10
Metals, mg/kg	_					
Aluminum Antimony	2 2	2	100% 50%	30 0.13	44 0.13	37 0.12
Arsenic	2	2	100%	0.13	0.13	0.12
Beryllium	- 2	-	0%		0.00	0.50
Cadmium	2	1	50%	0.097	0.097	0.17
Chromium	2		0%	1		0.25
Copper	2	2	100%	1.9	2.1	2.00
Cyanide, Total Lead	2 2	2	0% 100%	0.44	1.2	5.00 0.82
Mercury	2	2	0%	0.44	1.2	0.02
Nickel	2	2	100%	1.2	2.6	1.90
Selenium	2	-	0%		3.0	0.25
Silver	2		0%	_		0.04
Zinc	2	2	100%	20	26	23
CBs and Pesticides, ug/kg						
Decachlorobiphenyl	2		0%			25
Dichlorobiphenyl	2		0%			5.00
leptachlorobiphenyl	2		0%			15
lexachlorobiphenyl	2		0%			10
Monochlorobiphenyl Vonachlorobiphenyl	2 2	,	0% 0%			5.00 25
Octachlorobiphenyl	2		0%			15
entachlorobiphenyl	2		0%			10
etrachlorobiphenyl	2		0%			10
richlorobiphenyl	2		0%			5.00
otal PCBs	2 2		0% 0%			5.00
,4'-DDD (ug/kg) ,4'-DDE	2		0%			13 13
4'-DDT	2		0%			13
otal DDT	2		0%			13
ldrin	2	1	50%	0.81	0.81	3.91
Ipha Chlordane	2 2		0% 0%			7.00
ipha-BHC eta-BHC	2 2		0%			7.00 7.00
elta-BHC	2		0%			7.00
Dieldrin	2		0%			13
ndosulfan I	2		0%			7.00
ndosulfan II	2 2		0%			13
ndosulfan sulfate ndrin	2 2		0% 0%			13 13
ndrin aldehyde	2	j	0%	J		13
ndrin ketone	2	ŀ	ŏ%			13
amma Chlordane	2	1	50%	3.1	3.1	5.05
amma-BHC (Lindane)	2	.	0%	.	_	7.00
leptachlor	2	2	100%	1.8	1.9	1.85
leptachlor epoxide lethoxychlor	2 2	ŀ	0% 0%			7.00 70
oxaphene	2		0%			360
VOCs, ug/kg	i					
,2,4-Trichlorobenzene	2		0%	ļ		85
,2-Dichlorobenzene	2		0%			85
3-Dichlorobenzene	2		0%			85
,4-Dichlorobenzene ,2'-Oxybis(1-chloropropane)(bis(2-	2 2		0% 0%			85 85
4,5-Trichlorophenol	2		0%			210
,4,6-Trichlorophenol	2		0%	i		85
4-Dichlorophenol (ug/kg)	2	ĺ	0%	ĺ		85
4-Dimethylphenol	2	1	50%	51	51	68
4-Dinitrophenol	2		0%			210
,4-Dinitrotoluene ,6-Dinitrotoluene	2 2	l	0% 0%	I		85 85
-Chloronaphthalene	2	l	0%	i		85 85
-Chlorophenol	2	İ	0%	ŀ		85
-Methyl-4,6-dinitrophenol	2	l	0%	ļ		210
-Methylnaphthalene	2	!	0%	l		85
-Methylphenol (o-cresol)	2	I	0%			85
-Nitroaniline	2	l	0%	l		210
-Nitrophenol	2	l	0%			85
&4-Methylphenol (m&p-cresol) ,3'-Dichlorobenzidine	2 2	ŀ	0%			85 85
,3'-Dichlorobenzidine -Nitroaniline	2 2	l	0% 0%			85
-Nitroaniine -Bromophenylphenyl ether	2	ļ	0%	1		210 85
-Chloro-3-methylphenol	2		0%			85 85

Appendix C-3

Creek Sector F Plant Tissue Summary Statistics
Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
4-Chloroaniline	2		0%			85
4-Chlorophenylphenyl ether	2 2		0% 0%	ľ		85 210
4-Nitroaniline	2		0%			210
4-Nitrophenol Acenaphthene	2		0%			85
Acenaphthylene	2	1	50%	32	32	59
Anthracene	2	•	0%	32	- JE	85
Benzo(a)anthracene	ا و ا		0%			85
Benzo(a)pyrene	1 21	1	50%	140	140	113
Benzo(b)fluoranthene	1 2	1	50%	59	59	72
Benzo(g,h,i)perylene	2	1	50%	360	360	223
Benzo(k)fluoranthene	2	1	50%	52	52	69
bis(2-Chloroethoxy)methane] 2]		0%			85
bis(2-Chloroethyl)ether	2		0%			85
bis(2-Ethylhexyl)phthalate	2		0%		;	85
Butylbenzylphthalate	2		0%	i		85
Chrysene	2		0%			85
Di-n-butylphthalate	2 2		0% 0%			85 85
Di-n-octylphthalate	2	1	50%	76	76	81
Dibenzo(a,h)anthracene Dibenzofuran	2	•	0%	(°)	70	85
Diethylphthalate	1 2		0%			85
Dimethylphthalate	2		0%	1		85
Fluoranthene	1 21		0%	ĺ		85
Fluorene	2		0%		j	85
Hexachlorobenzene	2		0%	į	!	85
Hexachlorobutadiene	2		0%	1		85
Hexachlorocyclopentadiene	2		0%			85
Hexachloroethane	2		0%			85
Indeno(1,2,3-cd)pyrene	2	1	50%	300	300	193
Isophorone	2		0%			85
n-Nitrosodi-n-propylamine	2		0%	i		85
N-	2		0% 0%	1		85 85
Naphthalene Nitrobenzene	2		0%	1		85 85
Pentachiorophenol	2		0%	1		210
Phenanthrene	2		0%			85
Phenol	2		0%			85
Pyrene	2		0%			85
	_ 1					
Total PAHs	2	1	50%	660	660	460
Dioxins and Furans, ug/kg	ا	_ 1	4000	0.0500	0.0000	0.0704
1,2,3,4,6,7,8,9-OCDD	2	2	100% 100%	0.0569 0.0226	0.0833 0.0335	0.0701 0.02 8 05
1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8-HpCDD	2 2	2 2	100%	0.0226	0.0335	0.02805
1,2,3,4,6,7,8-HpCDF	2	2	100%	0.0057	0.0074	0.00655
1,2,3,4,7,8,9-HpCDF	2	-	0%	0.0037	0.0014	0.0003
1,2,3,4,7,8-HxCDD	2		0%			0.00025
1,2,3,4,7,8-HxCDF	2		0%			0.0002
1.2.3.6.7.8-HxCDD	2 2		0%			0.00025
1,2,3,6,7,8-HxCDF	2		0%			0.00015
1,2,3,7,8,9-HxCDD	2		0%	•		0.00025
1,2,3,7,8,9-HxCDF	2		0%	1		0.0002
1,2,3,7,8-PeCDD	2		0%			0.0002
1,2,3,7,8-PeCDF	2		0%			0.000175
2,3,4,6,7,8-HxCDF	2		0%	1		0.000175
2,3,4,7,8-PeCDF	2 2		0%			0.000175
2,3,7,8-TCDD 2,3,7,8-TCDF	2 2	ļ	0% 0%	ļ		0.000225 0.0002
2,3,7,8-TCDF	4		0-76			0.0002
rotal HpCDD	2	2	100%	0.014	0.0211	0.01755
Total HpCDF	2	2	100%	0.0173	0.0256	0.02145
Total HxCDD	2	2	100%	0.0025	0.0032	0.00285
Total HxCDF	2	2	100%	0.003	0.0064	0.0047
Total PeCDD	2	- 1	0%		2.22	0.0002
Total PeCDF	11	1				
i de la recor	21	I	0%			0.000175
Total TCDD	2 2	2	100%	0.0028	0.0031	0.00295

Summary Statistics for Reference Plant Tissue Data Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Herbicides, ug/kg 2,4,5-T	2		0%			5.00
2,4,5-TP (Silvex)	2		0%	}		5.00
2,4-D	2		0%			5.00
2,4-DB Dalapon	2		0%			5.00
Dicamba	2 2	1	0% 50%	1.8	1.8	1000 5.90
Dichloroprop	2	•	0%	1.0	1.0	5.90
Dinoseb	2		0%			50
MCPA((4-chloro-2-methylphenoxy)-acetic a MCPP[2-(4-chloro-2-methylphenoxy)-propan	2 2	1	0% 50%	1200	4200	1000
Pentachlorophenol	2	1	50%	1300 2	1300 2	1150 6.00
Metals, mg/kg						
Auminum	2	2	100%	160	360	260
Antimony Arsenic	2 2	1	0% 50%	1.1	4.4	0.10
Beryllium	2	•	0%	'.'	1.1	0.76 0.50
Cadmium	2		0%	ł		0.25
Chromium	2	2	100%	0.25	0.53	0.39
Copper Cyanide, Total	2 2	2	100% 0%	0.95	1.3	1.13
Lead	2	2	100%	0.3	0.64	5.00 0.47
Mercury	2	-	0%	3.3	5.54	0.01
Nickel	2		0%	Į.	J	5.00
Selenium Silver	2 2		0%	ĺ	ŀ	0.25
Zinc	2	2	0% 100%	6.8	8.3	0.05 7.55
			100 %		0.3	7.55
PCBs and Pesticides, ug/kg						
Decach(orobiphenyl Dichlorobiphenyl	2 2		0% 0%			25
Heptachlorobiphenyl	2		0%	Į		5.00 15
Hexachlorobiphenyl	2		0%	ľ	i	10
Monochlorobiphenyl Nonachlorobiphenyl	2		0%			5.00
Octachlorobiphenyl	2 2		0% 0%	ļ	1	25
Pentachlorobiphenyl	2	ľ	0%	ľ	ì	15 10
Tetrachlorobiphenyl	2	j	0%			10
Trichlorobiphenyl	2	i	0%			5.00
4.4'-DDE	2 2		0% 0%	i		13
1,4'-DDT	2		0%		\	13 13
Adrin	2]	1]	50%	1)	1	4.00
Alpha Chlordane	2	l	0%	1	i	7.00
ilpha-BHC teta-BHC	2 2		0% 0%			7.00
letta-BHC	2		0%	}	ĺ	7.00 7.00
Dieldrin	2		0%		j	13
ndosulfan I	2	i	0%			7.00
Endosulfan II Endosulfan sulfate	2 2	- (0%	į	ł	13
ndnn	2		0% 0%			13 13
ndrin aldehyde	2		o%	ŀ		13
ndrin ketone	2		0%			13
Samma Chlordane Jamma-BHC (Lindane)	2	i	0%			7.00
leptachlor	2 2	1	0% 50%	3.8	3.6	7.00 5.40
leptachlor epoxide	2	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.0	3.8	7.00
fethoxychlor	2		0%			7.00
oxaphene VOCs, ug/kg	2		0%			360
,2,4-Trichlorobenzene	2		0%	l		85
,2-Dichlorobenzene	2		0%		ļ	85 85
,3-Dichlorobenzene	2 (1	0%	ł	i	85
,4-Dichlorobenzene	2	i	0%		1	85
,2'-Oxybis(1-chloropropane)(bis(2-Chlor ,4,5-Trichlorophenol	2 2	ļ	0% 0%			85 310
,4,6-Trichlorophenol	2	1	0%		1	210 85
,4-Dichlorophenol	2	ļ	0%	Į	į	85
,4-Dimethylphenol	2	J	0%	J	J	85
4-Dinitrophenol 4-Dinitrotoluene	2 2	1	0%		l	210
6-Dinitratoluene	2	1	0% 0%			85 85
-Chioronaphthalene	2	1	0%		1	85
Chlorophenol	2	1	0%		- 1	85
-Methyl-4,6-dinitrophenol	2	ł	0%		- 1	210
Methylphenol (o-cresol)	2 2	1	0%	1	- 1	85
-Nitroaniline	2	1	0% 0%	}	1	85 210
Nitrophenol	2		0%	1		210 85
\$4-Methylphenol (m&p-cresol)	2		0%		1	85
3'-Dichlorobenzidine	2	1	0%		1	85
Nitroaniline Bromophenylphenyl ether	2 2		0%	ł	l i	210
Chloro-3-methylphenol	2	ſ	0% 0%	1	[65 65
Chloroaniline	2		0%	i	ľ	85 85
Chlorophenylphenyl ether	2		0%	I		85

Appendix C-3 Summary Statistics for Reference Plant Tissue Data Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentrator
I-Nitroaniline	2		0%			21
I-Nitrophenol	2		0%			21
Acenaphthene	2		0%			8
Acenaphthylene	2 2		0%			8
Anthracene	2		0%			8
Benzo(a)anthracene	2		0%	- 1		8
Benzo(a)pyrene	2	2	100%	15	37	2
Senzo(b)fluoranthene	2	1	50%	16	16	5
Benzo(g,h,i)perylene	2	2	100%	240	390	31
Benzo(k)fluoranthene	2	1	50%	21	21	5
is(2-Chloroethoxy)methane	2	•	0%	- 1		. e
is(2-Chloroethyl)ether	2		0%	1		a
iis(2-Ethylhexyl)phthalate	2		0%	i		8
Butylbenzylphthalate	2		0%			Š
Chrysene	51		0%			8
i-n-butylphthalate	2 2		0%			8
h-n-octylphthalate	2		0%			ě
Dibenzo(a,h)anthracene	2	2	100%	180	400	29
Dibenzofuran	2		0%	'90	400	8
Diethylphthalate	2		0%			8
imethylphthalate	2		0%			8
	2					
luoranthene	2		0%			
luorene	2		0%			E
lexachlorobenzene	2		0%	1		6
lexachlorobuladiene	2		0%	1		E
lexachlorocyclopentadiene	2	•	0%			8
lexachloroethane	2 2		0%			6
ndeno(1,2,3-cd)pyrene	2 j	2	100%]	220	440	33
sophorone	2		0%			8
-Nitrosodi-n-propytamine	2		0%	ľ	ŀ	8
l-Nitrosodiphenylamine/Diphenylamine	2 2		0%			8
aphthalene	2		0%			8
litrobenzene	2		0%			8
entachlorophenol	2		0%			21
henanthrene	2		0%			8
thenal	2 2		0%)		: 8
yrene	2		0%			5
loxins and Fugrans, ug/kg			`			
,2,3,4,6,7,8,9-OCDD	2	2	100%	0.0832	0.0871	0.0851
,2,3,4,6,7,8,9-OCDF	2	2	100%	0.00062	0.0085	0.0045
,2,3,4,6,7,8-HpCDD	2	2	100%	0.0021	0.0061	0.004
,2,3,4,6,7,8-HpCDF	2	1	50%	0.0014	0.0014	0.0007
2,3,4,7,8,9-HpCDF	2		0%	1		0.000
2,3,4,7,8-HxCDD	2	ĺ	0%	Í	ì	0.00027
2,3,4,7,8-HxCDF	2		0%			0.00017
2,3,6,7,8-HxCDD	2	l	0%	1	l	0.0002
2,3,6,7,8-HxCDF	2		0%			0.00017
2,3,7,8,9-HxCDD	2		0%			0.0002
2,3,7,8,9-HxCDF	2		0%			0.000
2,3,7,8-PeCDD	2		0%	1		0.00022
2,3,7,8-PeCDF	2	}	0%	1	ł	0.00017
3,4,6,7,8-HxCDF	2		0%	l		0.00017
3,4,7,8-PeCDF	2		0%			0.00017
3,7,8-TCDD	2		0%	į.		0.0002
3,7,6-TCDF	2		0%			0.002
3,7,8-TCDF	'	ļ	~~ <u>~</u>	Į.	i	3.000
otal HpCDD	2	2	100%	0.0059	0.0127	0.009
otal HpCDF		1	50%			0.00
	2	11	50%	0.0059	0.0059	
otal HxCDO	2	וי		0.0014	0.0014	0.000
otal HxCDF	2		0%			0.00017
otal PeCDD	2		0%			0.00022
otal PeCDF	2		0%			0.00017
otal TCDD	2	J	0%	J	J	0.00022
NaT TCDF	2		0%	I		0.000

Appendix C-3

Borrow Pit Lake Shrimp Tissue Data
Sauget Area I

Compounds	Shrimp BP Comp Concentration E			
Herbicides, ug/kg				
2,4,5-T	10	U		
2,4,5-TP (Silvex)	10	Ū		
2.4-D	10	Ũ		
2,4-DB	10	Ū		
Dalapon	2000	Ú		
Dicamba	20	U		
Dichloroprop	100	U		
Dinoseb	100	U		
MCPA[(4-chloro-2-				
methylphenoxy)-acetic a	2000	U		
MCPP[2-(4-chloro-2-				
methylphenoxy)-propan	2000	U		
Pentachlorophenol	1.8	J		
Aluminum	28			
Antimony	0.16	J		
Arsenic	2.0	U		
Beryllium	1.0	U		
Cadmium	0.50	U		
Chromium	0.23	J		
Copper	8.3			
Cyanide, Total	10	U		
Lead	0.39	J		
Mercury	0.095	U		
Nickel	10	U		
Selenium	0.50	U		
Silver	0.090	J		
Zinc	16			
% Lipid	0.03			
PCBs and Pesticides, ug/kg	0.03			
Decachlorobiphenyl	100	υ		
Dichlorobipheny!	20	ŭ		
-leptachlorobiphenyl	60	Ū		
Hexachlorobiphenyl	40	Ū		
Monochlorobiphenyl	20	Ū		
Nonachlorobiphenyl	100	U		
Octachlorobiphenyl	60	U		
Pentachlorobiphenyl	40	U		
Tetrachlorobiphenyl	40	U		
Trichlorobiphenyl	20	U		
Total PCBs	40	U		
1,4'-DDD	4.0	U		
1,4'-DDE	4.0	υ		
I,4'-DDT	4.0	U		
Total DDT	4	υ		
Ndrin	2.0	U		
Alpha Chlordane	2.0	U		
lpha-BHC	2.0	U		
peta-BHC	2.0	U		
lelta-BHC	2.0	U		
Dieldrin	4.0	U		
Endosulfan I	2.0	U		
ndosulfan II	4.0	U		
ndosulfan sulfate	4.0	U		
ndrin	4.0	U		
ndrin aldehyde	4.0	U		
ndrin ketone	4.0	U		
Samma Chlordane	2.0	U		
jamma-BHC (Lindane)	2.0	U		
leptachlor	2.0	U		
leptachlor epoxide	2.0	U		
Methoxychlor	20	U		
oxaphene	110	<u> </u>		
SVOCs, ug/kg	246			
,2,4-Trichlorobenzene	340	Ü		
	340	υ		
2-Dichlorobenzene	240			
,3-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene	340 340	Ü		

Borrow Pit Lake Shrimp Tissue Data Sauget Area I

Т				
	Shrimp BP Comp			
Compounds	Concentration	ER Q		
1				
2,2'-Oxybis(1-				
chloropropane)[bis(2-Chlor	340	U		
2,4,5-Trichlorophenol	840	U		
2,4,6-Trichlorophenol	340	U		
2,4-Dichlorophenol	340	υ		
2,4-Dimethylphenol	340	U		
2,4-Dinitrophenol	840	U		
2,4-Dinitrotoluene	340	U		
2,6-Dinitrotoluene	34 0	U		
2-Chloronaphthalene	340	υ		
2-Chlorophenol	340	U		
2-Methyl-4,6-dinitrophenol	840	U		
2-Methylnaphthalene	340	U		
2-Methylphenol (o-cresol)	340	U		
2-Nitroaniline	840	υ		
2-Nitrophenol	340	U		
3&4-Methylphenol (m&p-cresol)	340	U		
3,3'-Dichlorobenzidine	340	U		
3-Nitroaniline	840	U		
4-Bromophenylphenyl ether	340	Ū		
4-Chloro-3-methytphenol	340	U		
4-Chloroaniline	340	U		
4-Chlorophenylphenyl ether	340	Ū		
4-Nitroaniline	840	Ū		
4-Nitrophenol	840	· Ū		
Acenaphthene	340	ŭ		
Acenaphthylene	340	ū		
Anthracene	340	ŭ		
Benzo(a)anthracene	340	ũ		
Benzo(a)pyrene	340	ŭ		
Benzo(b)fluoranthene	340	Ü		
Benzo(g,h,i)perylene	340	ŭ		
Benzo(k)fluoranthene	340	ŭ		
bis(2-Chloroethoxy)methane	340	ŭ		
bis(2-Chloroethyl)ether	340	ŭ		
bis(2-Ethylhexyl)phthalate	340	ŭ		
Butylbenzylphthalate	340	ŭ		
Carbazole	340	ŭ		
Chrysene	340	ŭ		
Di-n-butylphthalate	340	ŭ		
Di-n-octylphthalate	340	ŭ		
Dibenzo(a,h)anthracene	340	ŭ		
Dibenzofuran	340	Ü		
Diethylphthalate	44	J		
Dimethylphthalate	340	u		
Fluoranthene	340	Ü		
Fluorantiene	340 340	ü		
Hexachlorobenzene	340 340	Ü		
Hexachlorobutadiene	340 340	U		
Hexachlorocyclopentadiene	340 340	Ü		
	340	Ü		
Hexachloroethane	340	U		

Appendix C-3

Borrow Pit Lake Shrimp Tissue Data
Sauget Area I

	Shrimp BP Comp				
Compounds	Concentration	ER Q			
Indeno(1,2,3-cd)pyrene	340	U			
Isophorone	340	U			
n-Nitrosodi-n-propylamine N-	340	U			
Nitrosodiphenylamine/Diphenyla					
mine	340	U			
Naphthalene	340	U			
Nitrobenzene	340	Ū			
Pentachlorophenol	840	U			
Phenanthrene	340	U			
Phenol	340	U			
Pyrene	340	U			
Total PAHs	340	υ			
Dioxins and Furans, ug/kg					
1,2,3,4,6,7,8,9-OCDD	0.0198				
1,2,3,4,6,7,8,9-OCDF	0.0043				
1,2,3,4,6,7,8-HpCDD	0.0031				
1,2,3,4,6,7,8-HpCDF	0.0015				
1,2,3,4,7,8,9-HpCDF	0.0004	U			
1,2,3,4,7,8-HxCDD	0.0003	U			
1,2,3,4,7,8-HxCDF	0.0002	U			
1,2,3,6,7,8-HxCDD	0.0002	U			
1,2,3,6,7,8-HxCDF	0.0002	U			
1,2,3,7,8,9-HxCDD	0.0003	U			
1,2,3,7,8,9-HxCDF	0.0002	U			
1,2,3,7,8-PeCDD	0.0003	U			
1,2,3,7,8-PeCDF	0.0002	U			
2,3,4,6,7,8-HxCDF	0.0002	U			
2,3,4,7,8-PeCDF	0.0002	U			
2,3,7,8-TCDD	0.0002	U			
2,3,7,8-TCDF 2,3,7,8-TCDF	0.0018 0.0016				
Total HpCDD	0.0016				
Total HpCDF	0.0076				
Total HxCDD	0.0046				
Total HxCDF	0.005				
Total PeCDD	0.0028				
Total PeCDF	0.002				
otal TCDD	0.0025	IJ			
otal TCDF	0.0002	Ų			

Appendix C-3 Summary Statistics for Reference Shrimp Data Sauget Area I

Harbicides, up/kg)							Average
2.4.5 Tr (Shews)		Analyzed	Detected	Detection	Detected	Detected	Concentration
2.4.5TP (Silvery) 2		2			Į.		5.00
2.4-D					1.2	1.2	3.15
2.4-DB 2			Į.		1.3	1.3	5.00
Dalapon 2							5.00
Dicamba 2							1000
Dischloroprop				0%			10
MCPPA(4-chloro-2-methylphenoxy)-acetic 2	chloroprop			0%	i		50
MCPPIP2(4-chiloro-2-methyliphenoxy)-	ioseb	2					50
Pentachiorophenol 2 2 100% 1.5 3.9		2					1000
Mateila, mg/kg							2700
Aliminum 2 2 100% 60 100 Ansimony 2 2 100% 60 100 Ansimony 2 1 50% 1.2 1		2	2	100%	1.5	3.9	2.70
Antimony, 2 0% Azience 2 1 50% 1.2		_	_				
Arsenic 2 1 50% 1.2 12 Baryllium 2 0 0% Cadmum 2 0 0% Cadmum 2 0 0% Crommim 2 0 0% Copper 2 100% 0.26 0.28 Copper 2 2 100% 0.26 16 Copper 2 2 100% 0.26 16 Copper 2 2 100% 0.38 0.61 Mercury 2 2 0% Nickel 2 0% Nickel 2 100% 0.47 0.61 Selenium 2 1 00% 0.47 0.61 Selenium 2 2 2 100% 0.47 0.65 Selenium 2 2 2 100% 0.059 0.062 Zinc 2 2 100% 0.059 0.062 Zinc 2 2 100% 0.27 0.38 PCBs and Peaticides, up/kg Decachiorobiphenyl 2 0% Cichiorobiphenyl 2 0% Heplachiorobiphenyl 2 0% Monochlorobipheny			2		60	100	80
Barystum					4.0	4.0	0.09
Cadmium			1		1.2	1.2	1.10
Circomium 2 2 100% 0.26 0.28 Copper 2 2 100% 8.5 16 Cyanide, Total 2 0 % 8.5 16 Cyanide, Total 2 0 % 0.38 0.61 Mercury 2 0 % 0.38 0.61 Mercury 2 0 % 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.63 0.63 0							0.44
Copper 2 2 100% 8.5 16 Cyanide, Total 2 2 100% 0.38 0.61 Mercury 2 0% 0.85 0.61 Nickel 2 0% 0.059 0.062 Silver 2 2 100% 0.47 0.61 Silver 2 2 100% 0.059 0.062 Zinn 2 2 100% 0.27 0.81 PCBs and Pasticides, up/kg 2 2 100% 0.27 0.38 PCBs and Pasticides, up/kg 2 0% 4 4 0.60 4 4 4 0.60 4 4 4 0.60 4 4 4 0.60 4 4 4 0.60 4 4 4 4 0.00 4 4 4 0.60 4 4 4 0.00 4 4 4 0.00 4 4 0.00 4		<u> </u>			0.00	0.00	0.22 0.27
Cyanide, Total 2 0% 0.38 0.61 Mercury 2 0% 0% 0.47 0.61 Nickel 2 0% 0.47 0.61 0.61 Selenium 2 2 100% 0.59 0.062 Zinc 2 2 100% 0.59 0.062 Zinc 2 2 100% 0.59 0.062 Zinc 2 2 100% 0.59 0.062 Zinc 2 2 100% 0.57 0.38 Decachiorobiphenyl 2 0							
Liead			2		6.5	10	12 5.00
Mercury 2		5	2		0.38	0.61	0.50
Nicker			2		0.36	0.01	0.04
Selenium 2						1	4.35
Silver 2 2 100% 0.059 0.062 2 2 100% 15 7 7 7 7 7 7 7 7 7		51	2		0.47	0.61	0.54
Zinc 2 2 100% 15 17							0.06
K. Lipid 2							16
PCBs and Pasticides, ug/kg Decachiorobiphenyl 2 0%		- 1	- 1			• • • • • • • • • • • • • • • • • • • •	"
PCBs and Pasticides, ug/kg Decachiorobiphenyl 2 0%		2	2	100%	0.27	0.38	0.33
Decatinorbipheny	Bs and Pesticides, ug/kg						
Hepitachiorobiphenyl 2	cachlorobiphenyl]		50
Heisachiorobiphenyl	hiorobiphenyl	2	j				10
Monachlorobiphenyl 2							30
Nonachlorobiphenyl 2		2					20
Octachiorobiphenyl 2 1 50% 22 22 Tetrachiorobiphenyl 2 0% 4 22 22 Trichiorobiphenyl 2 0% 4 4 0 9 4 4 0 9 4 4 0 9 4 4 0 9 4 4 0 4 4 0 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td>							10
Pentachlorobipheny					ì		50
Tetrachlorobiphenyl 2 0% Trichiorobiphenyl 2 0% (% 4.4-DDE) 2 0% (% 4.4-DD					20	••	30
Trichirorbiphenyi			7		22	22	21
4.4'-DDD (ug/kg) 2 0% 4.4'-DDE 2 0% 4.4'-DDT 2 0% Alpha Chiordane 2 0% aipha-BHC 2 0% beta-BHC 2 0% deta-BHC 2 0% Dieldrin 2 0% Endosulfan I 2 0% Endosulfan III 2 0% Endosulfan sulfate 2 0% Endosulfan sulfate 2 0% Endorin aldehyde 2 0% Endrin aldehyde 2 0% Endrin aldehyde 2 0% Endrin aldehyde 2 0% Endrin aldehyde 2 0% Endrin aldehyde 2 0% Endrin betone 2 0% Gamma Chiordane 2 0% gamma-BHC (Lindane) 2 0% Heptachlor epoxide 2 0% Methoxychlor 2 0% Toxapinene 2 0% SVOCs. ug/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20 10</td>							20 10
4.4'-DDE							2.00
A4-DDT							2.00
Aldrin							2.00
Alpha Chlordane 2 0%					ļ		1.00
alpha-BHC					1		1.00
Dieldrin 2							1.00
Dieldrin 2							1.00
Endosulfan 2 0% Endosulfan 2 0% Endosulfan 2 0% Endosulfan 2 0% Endosulfan suifate 2 0% Endoin aldehyde 2 0% Endrin aldehyde 2 0% Endrin ketone 2 0% En	a-BHC			0%			1.00
Endosulfan II 2 0% Endosulfan sulfate 2 0% Endrin aldehyde 2 0% Endrin ladehyde 2 0% Endrin ketone 2 0% Gamma Chlordane 2 0% gamma-BHC (Lindane) 2 0% Heptachtor 2 0% Heptachtor 2 0% Methoxychl	idrin						2.00
Endosulfan sulfate 2 0% Endrin 2 0% Endrin 2 0% Endrin 1 2 0% Endrin Idehyde 2 0% Endrin Idehyde 2 0% Endrin Idehyde 2 0% Endrin Idehyde 2 0% Garnina Chlordane 2 0% garnina-BHC (Lindane) 2 0% Heptachlor 2 0% Heptachlor 90xide 2 0% Methoxychlor 2 0% Methoxychlor 2 0% Toxaphene 2 0% Toxaphene 2 0% Toxaphene 2 0% Toxaphene 2 0% Toxaphene 2 0% Toxaphene 2 0% Toxaphene 2 0% 1,2.4-Trichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,4-S-Trichlorophenol 2 0% 2,4-S-Trichlorophenol 2 0% 2,4-Dinitrophenol 2 0%					l l		1.00
Endrin aldehyde							2.00
Endrin ketone 2 0% Endrin ketone 2 0% Gamma Chlordane 2 0% gamma-BHC (Lindane) 2 0% Heptachtor 2 0% Heptachtor 2 0% Methoxychlor 2 0% Methoxychlor 2 0% Methoxychlor 2 0% Toxaphene 2 0% SVOCs, ug/kg 1,2,4-Trichlorobenzene 2 0% 1,2-Dichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Firichlorophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,5-Dinitrotoluene 2 0%					ì		2.00
Endrin ketone 2 0% 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							2.00
Gamma Chlordane 2 0% gamma-BHC (Lindane) 2 0% Heptachlor 2 0% Heptachlor 2 0% Heptachlor epoxide 2 0% Methoxychlor 2 0% SVOCs, ug/kg 1,2,4-Trichlorobenzene 2 0% 1,2-Dichlorobenzene 2 0% 1,2-Dichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-Oxybis(1-chloropropane)(bis(2-Chlor 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Dinthyl							2.00
gamma-BHC (Lindane) 2 0% Heptachtor 2 0% Heptachtor boxide 2 0% Methoxychlor 2 0% Methoxychlor 2 0% SVOCs, ug/kg 0 1,2,4-Trichlorobenzene 2 0% 1,2-Dicklorobenzene 2 0% 1,3-Dicklorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-Oxybis(1-chloropropane)(bis(2-Chlor 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,4-Dintrophenol 2 0% 2,5-Dintro					ł.		2.00
Heptachlor 2					ł		1.00
Heptachlor epoxide					l		1.00 1.00
Methoxychlor 2 0% Toxaphene 2 0% SVOCs, ug/kg 3 0% 1,2-Dichlorobenzene 2 0% 1,2-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-Oxybis(1-chloroprepane)(bis(2-Chlor) 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Dinthylphenol 2 0% 2,4-Dinthylphenol 2 0% 2,4-Dinthylphenol 2 0% 2,4-Dinthylphenol 2 0% 2,4-Dinthylphenol 2 0% 2,5-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chloronaphthalene 2 0%	tachlor enovide						1.00
Toxaphene]		1.00
SVOCs, ug/kg					l		55
1,2,4-Trichlorobenzene 2 0% 1,2-Dicklorobenzene 2 0% 1,2-Dicklorobenzene 2 0% 1,3-Dicklorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-Oxybis(1-chloroprenale)(bis(2-Chlor 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Trichlorophenol 2 0% 2,4-Dinitrophenol 2 0% 2 0% 2,4-Dinitrophenol 2 0%							
1,2-Dichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,3-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-Oxybis(1-chloropropane)(bis(2-Chlor 2 0% 2,4,5-Trichlorophenol 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Dichlorophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,2-Dinitrotoluene 2 0% 2,2-Dinitrotoluene 2 0% 2-C-Dinitrotoluene 2 0% 2-C-Dinitrotoluene 2 0%		2 [0%ĺ	í		170
1,3-Dichlorobenzene 2 0% 1,4-Dichlorobenzene 2 0% 2,2-2-Oxybig1-c-bloropropane)(bis(2-Chlor 2 0% 2,4,5-Trichlorophenol 2 0% 2,4-5-Trichlorophenol 2 0% 2,4-Dichlorophenol 2 0% 2,4-Dinitrophenol 2 0%		2					170
2,2'-Oxybis(1-chioropropane)(bis(2-Chior 2 0% 2,4'-5-Trichiorophenol 2 0% 2,4-5-Trichiorophenol 2 0% 2,4-5-Trichiorophenol 2 0% 2,4-Dirichiorophenol 2 0% 2,4-Dirichiorophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrotoluene 2 0% 2,2-6-Dinitrotoluene 2 0% 2,2-6-Dinitrotoluene 2 0% 2,2-6-Dinitrotoluene 2 0% 2,2-Chioronaphthalene 2 0%	Dichlorobenzene	2					170
2,4,5-Trichlorophenol 2 0% 2,4,6-Trichlorophenol 2 0% 2,4-Dichlorophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chiorronaphthalene 2 0%					ļ		170
2,4.6-Trichlorophenol 2 0% 2,4-Dichlorophenol 2 0% 2,4-Dimitrylphenol 2 0% 2,4-Dinitrylphenol 2 0% 2,4-Dinitrylphenol 2 0% 2,4-Dinitrylphenol 2 0% 2,6-Dinitrylphenol 2 0% 2,6-Dinitrylphenol 2 0% 2-Chloronaphthalene 2 0%							170
2,4-Dichlorophenol 2 0% 2,4-Dinethylphenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chloronaphthalene 2 0%					J		420
2,4-Dimethylphenol 2 0% 2,4-Dinitrophenol 2 0% 2,4-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chioronaphthalene 2 0%							170
2,4-Dinitrophenol 2 0% 2,4-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chloronaphthalene 2 0%					1		170
2,4-Dinitrotoluene 2 0% 2,6-Dinitrotoluene 2 0% 2-Chloronaphthalene 2 0%							170
2,6-Dinitrotoluene 2 0% 2-Chloronaphthalene 2 0%			İ		ļ		420
2-Chloronaphthalene 2 0%							170
					ļ		170
r-Giller Opinion ∡ U7s							170 170
2-Methyl-4,6-dintrophenol 2 0%							170 420
2-Methylnaphthalene 2 0%							170
2-Methylphenol (o-cresol)			İ		ļ		170
- Nitroanline 2 0%					j		420
-Nitrophenol 2 0%					}		170
34-Methylphenol (map-cresol) 2 0%]		170
3,3-Dichlorobenzidine 2 0%							170
3-Nitroanline 2 0%			ł				420
4-Bromophenylphenyl ether 2 0%							170
4-Chloro-3-methylphenol 2 0%	nloro-3-methylphenol						170
4-Chloroaniline 2 0%	nloroaniline				ľ		170

Appendix C-3 Summary Statistics for Reference Shrimp Data Sauget Area 1

	I					
Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
4-Chlorophenylphenyl ether	Arialyzeu 2	Detected	0%	Detected	Detected	170
4-Nitroaniline	2		0%(Į		420
4-Nitrophenol	2		0%			420
Acenaphthene	2		0%			170
Acenaphthylene	2		0%			170
Anthracene	2		0%			170
Benzo(a)anthracene	2		0%			170
Benzo(a)pyrene	2		0%	i		170
Benzo(b)fluoranthene	2		0%			170
Benzo(g,h,i)perylene	2		0%			170
Benzo(k)fluoranthene	2		0%			170
bis(2-Chloroethoxy)methane	2		0%			170
bis(2-Chloroethyl)ether	2	_ '	0%	}		170
bis(2-Ethylhexyl)phthalate	2	2	100%	92	98	95
Butylbenzylphthalate	2 (0%	ļ		170
Carbazole	2		0%			170
Chrysene	2		0%			170
Di-n-butylphthalate	2		0%			170
Di-n-octylphthalate	2		0%			170
Dibenzo(a,h)anthracene Dibenzofuran	2 2		0% 0%			170 170
Diethylphthalate	2	2	100%	57	59	58
Dimethylphthalate	2	2	0%	3/	35	170
Fluoranthene	2		0%			170
Fluorene	2		0%	j		170
Hexachlorobenzene	2		0%			170
Hexachlorobutadiene	2		0%			170
Hexachlorocyclopentadiene	2		0%			170
Hexachloroethane	2		0%			170
Indeno(1,2,3-cd)pyrene	2		0%	i		170
Isophorone	2		0%	i		170
n-Nitrosodi-n-propylamine	2		0%	J		170
N-Nitrosodiphenylamine/Diphenylamine	2		0%			170
Naphthalene	2		0%			170
Nitrobenzane	2		0%			170
Pentachlorophenol	2		0%	i		420
Phenanthrene	2		0%			170
Phenol	2		0%			170
Pyrene	2		0%	İ		170
Dioxins and Furans, ug/kg			i			
1,2,3,4,6,7,8,9-OCDD	2	2	100%	0.0166	0.0299	0.02325
1,2,3,4,6,7,8,9-OCDF	2	ĩl	50%	0.0011	0.0011	0.000675
1,2,3,4,6,7,8-HpCDD	2	2	100%	0.0011	0.0024	0.00175
1,2,3,4,6,7,8-HpCDF	2		0%			0.000125
1,2,3,4,7,8,9-HpCDF	2	1	0%	ì		0.0002
1,2,3,4,7,8-HxCDD	2	ĺ	0%			0.000175
1,2,3,4,7,8-HxCDF	2		0%			0.0001
1,2,3,6,7,8-HxCDD	2		0%	1		0.00015
1,2,3,6,7,8-HxCDF	2 2		0%	1		0.0001
1,2,3,7,8,9-HxCDD	2	1	50%	0.00069	0.00069	0.000445
1,2,3,7,8,9-HxCDF	2		0%	l.		0.000125
1,2,3,7,8-PeCDD	2		0%			0.000175
1,2,3,7,8-PeCDF	2	1	0%			0.000125
2,3,4,6,7,8-HxCDF	2		0%			0.0001
2,3,4,7,8-PeCDF	2		0%			0.000125
2,3,7,8-TCDD	2)	0%	ì	1	0.00015
2,3,7,8-TCDF	2		0%	- 1	l	0.0001
2,3,7,8-TCDF	_ 1	أي	4000	2 2225	^ ^^~	0.000
Total HpCDD	2	2 2	100% 100%	0.0035	0.0098	0.00665
Total HyCDF	2 2	2 2		0.00037	0.001	0.000685
Total HxCDD Total HxCDF			100% 100%	0.0023	0.0071 0.0011	0.0047
Total PeCDD	2	2	100%	0.00062		0.00086
Total PeCDF	2 2	2	100% 50%	0.002	0.0042 0.00054	0.0031
Total TCDD	2 2	1 1	50%	0.00054 0.00053	0.00054	0.000345
	2 2	1	0%	0.00033	0.00053	0.00034
Total TCDF	2		U%		,	0.0001

Appendix C-3 Borrow Pit Lake Clam Summary Statistics Sauget Area I

	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
Herbicides, ug/kg						
2,4,5-T] 3		0%			22
2,4,5-TP (Silvex)] 3		0%			22
2,4-D] 3		0%			22
2,4-DB] 3		0%			22
Dalapon] 3		0%			4333
Dicamba] 3	_	0%	۱		42
Dichloroprop] 3	3	100%	3.2	32	18
Dinoseb] 3		0%	1		217
MCPA[(4-chloro-2-] 3	. 1	0%			4333
MCPP[2-(4-chloro-2-	3	1	33%	4000	4000	5000
Pentachlorophenol	3		0%			43
Metals, mg/kg	. 1					
Aluminum	3	3	100%	7.5	13	10.5
Antimony	3		0%			0.09
Arsenic	3	1	33%	0.96	0.96	1.82
Beryllium	3		0%			0.455
Cadmium	3	2	67%	0.074	0.12	0.14
Chromium	3	3	100%	0.22	1.1	0.68
Copper	3	3	100%	0.6	0.99	0.86
Cyanide, Total	3		0%			5
Lead	3	1]	33%	0.25	0.25	0.23
Mercury	3		0%			0.04
Nickel	3		0%			4.55
Selenium	3		0%			0.225
Silver	3	1	33%	0.015	0.015	0.04
Zinc	3	3	100%	8.9	22	14.97
[1	_			1	
% Lipid	3	3	100%	0.05	0.23	0.12
PCB, ug/kg						
Decachlorobiphenyl	3		0%			33.33
Dichlorobiphenyl	3		0%			6.67
Heptachlorobiphenyl	3		0%			20.00
Hexachlorobiphenyl	3		0%			13.33
Monochlorobiphenyl	š		0%			7
Nonachlorobiphenyl] 3		0%			33.33
Octachlorobiphenyl	3		0%			20.00
Pentachlorobiphenyl	3		0%			13.33
Tetrachlorobiphenyl	3		0%		i	13.33
Trichlorobiphenyl	3		0%			7
Tital not department.			· · · ·			
Total PCBs	3		0%			13.00
Pesticides, ug/kg						
4.4'-DDD	3		0%			12
4.4'-DDE	3		0%			12
4.4'-DDT	3	ł	0%			12
Total DDT	3		0%			12
Aldrin	3		0%			6.12
Alpha Chlordane	3	į	0%			6.12
alpha-BHC	3		0%		-	6.12
beta-BHC	3		0%		1	6.12
delta-BHC	3		0%		ì	6.12
Dieldrin	3		0%			12
Endosulfan I	3		0%			6.12
Endosulfan II	3		0%			12
Endosulfan sulfate	3		0%			12
Endrin	3		0%			12
Endrin aldehyde	3	ŀ	0%	į į		12
Endrin ketone	3	ı	ő%			12
Gamma Chlordane	3	Į.	0%		į	6.12
gamma-BHC (Lindane)	3		0%			6.12
Heptachior	3	1	33%	2.3	2.3	3.55
Heptachlor epoxide	š	'1	0%	5	2.0	6.12
Methoxychlor	š	1 J	33%	5.4	5.4	30
Toxaphene	3	' '	0%	5.7		327
SVOCs, ug/kg			- 7/0			
1,2,4-Trichlorobenzene	3	j	0%			113
1,2-Dichlorobenzene	3	l	0%			113
1,3-Dichlorobenzene	3		0%			113
1,4-Dichlorobenzene	3	1	0%			113
2,2'-Oxybis(1-	3	1	0%			
2,2-Uxybis(1- 2,4,5-Trichlorophenol	3		0%			113 280
					İ	
2,4,6-Trichlorophenol	3	l	0%			113
2,4-Dichlorophenol	3		0%			113
2,4-Dimethylphenol	3	1	0%			113
2,4-Dinitrophenol	3		0%			280
2,4-Dinitrotoluene	3		0%			113
2,6-Dinitrotoluene	3		0%			113
2-Chloronaphthalene	3		0%			113
2-Chlorophenol	3		0%	İ		113
2-Methyl-4,6-dinitrophenol	3		0%			280
2-Methylnaphthalene	3		0%			113
2-Methylphenol (o-cresol)	3	l	0%			113
2-Nitroaniline	3		0%			280
2-Nitrophenol	3		0%			113
3&4-Methylphenol (m&p-	3		0%	1		113
3,3'-Dichlorobenzidine	3		0%			113
-,- District Control of the	<u> </u>		0.70			

Appendix C-3

Borrow Pit Lake Clam Summary Statistics
Sauget Area I

		- · · -		<u> </u>		
						İ
1	Number	Number	Frequency of	Minimum	Maximum	Average
Compounds	Analyzed	Detected	Detection	Detected	Detected	Concentration
3-Nitroaniline	3		0%			280
4-Bromophenylphenyl ether	3		0% 0%			113 113
4-Chloro-3-methylphenol 4-Chloroaniline	3		0%			113
4-Chlorophenylphenyl ether	3		0%			113
4-Nitroaniline	3		0%			280
4-Nitrophenol	3		0%			280
Acenaphthene	3		0%			113
Acenaphthylene	3		0%			113
Anthracene	3		0%			113
Benzo(a)anthracene	3	'	0%			113
Benzo(a)pyrene	3		0%			113
Benzo(b)fluoranthene	3		0%			113
Benzo(g,h,i)perylene	3		0%			113
Benzo(k)fluoranthene	3		0%			113
bis(2-	3		0%			113
bis(2-Chloroethyl)ether	3	_	0%		470	113
bis(2-Ethylhexyl)phthalate	3	3	100%	55	170	99
Butylbenzylphthalate Carbazole	3		0% 0%			113 113
Chrysene	3 3		0%			113
Di-n-butylphthalate	3		0%			113
Di-n-octylphthalate	3		0%	•		113
Dibenzo(a,h)anthracene	š		0%			113
Dibenzofuran	3		0%			113
Diethylphthalate	3	3	100%	53	120	75
Dimethylphthalate	3 .		0%	-		113
Fluoranthene	3		0%			113
Fluorene	3		0%			113
Hexachlorobenzene	3 (0%		. [113
Hexachlorobutadiene	3		0%			113
Hexachlorocyclopentadiene	3		0%			113
Hexachloroethane	3		0% 0%			113
Indeno(1,2,3-cd)pyrene	3 3		0%			113 113
Isophorone n-Nitrosodi-n-propylamine	3		0%			113
N-	3		0%			113
Naphthalene	3		0%			113
Nitrobenzene	3		0%			113
Pentachlorophenol	3		0%			280
Phenanthrene	3)		0%	Ì	ì	113
Phenol	3		0%			113
Pyrene	3		0%			113
- :	_ [اـ
Total PAHs	3		0%			113
Dioxins and Furans,	ا ا	3	100%	0.0024	0.0454	0.0000000007
1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF	3 3	3	0%	0.0034	0.0151	0.008066667
1,2,3,4,6,7,8-HpCDD	3	1	33%	0.0014	0.0014	0.000366667 0.000616667
1,2,3,4,6,7,8-HpCDF	3	'	0%	0.0014	0.0014	0.000166667
1,2,3,4,7,8,9-HpCDF	3		0%		1	0.00010
1,2,3,4,7,8-HxCDD	š		0%			0.0002
1,2,3,4,7,8-HxCDF	3		0%			0.000116667
1,2,3,6,7,8-HxCDD	3		0%		l	0.000166667
1,2,3,6,7,8-HxCDF	3		0%			0.0001
1,2,3,7,8,9-HxCDD	3		0%	1	ľ	0.0002
1,2,3,7,8,9-HxCDF	3		0%	l		0.000133333
1,2,3,7,8-PeCDD	3		0%	l		0.000133333
1,2,3,7,8-PeCDF	3		0%	l		0.0001
2,3,4,6,7,8-HxCDF	3		0%		Į	0.0001
2,3,4,7,8-PeCDF	3		0%			0.0001
2.3.7.8-TCDD 2.3.7.8-TCDF	3	1	0% 100%	0.001	0.001	0.0001 0.001
2,3,7,8-TCDF	1 3	3	100%	0.00031	0.001	0.000823333
Total HpCDD	3	1	33%	0.0031	0.0015	0.000823333
Total HpCDF	3 3	']	0%	0.0034	V.0034	0.001263333
Total HxCDD	3	1	33%	0.00055	0.00055	0.000283333
Total HxCDF	3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.55555	0.00000	0.000116667
Total PeCDD	3 3		0%		l	0.000133333
Total PeCDF	3	2	67%	0.0013	0.0014	0.000916667
Total TCDD	3	3	100%	0.00017	0.0014	0.00089
Total TCDF	3	3	100%	0.00093	0.008	0.00451

Appendix C-3

Reference Area Clam Summary Statistics Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
Herbicides, ug/kg						
2,4,5-T	3		0%			
2,4,5-TP (Silvex)	3		0%			
2,4-D	3		0%			
2,4-DB	3		0%			
Dalapon	3		0%			40
Dicamba	3	_	0%			
Dichloroprop	3	3	100%	6.50	87.00	
Dinoseb	3	_	0%			2
MCPA((4-chloro-2-methylphenoxy)-acetic a	3	1	33%	1,400.00	1,400.00	74
MCPP(2-(4-chloro-2-methylphenoxy)-	3		0%		,	73
Pentachiorophenol	3		0%			
Metals, mg/kg						
Aluminum	3	3	100%	14.00	26.00	18.
Antimony	3		0%			0.0
Arsenic	3	1	33%	0.65	0.65	1.1
Beryllium	3		0%[0.4
Cadmium	3	3	100%	0.16	0.61	0.4
Chromium	3	3	100%	0.79	2.20	1.5
Copper	3	3	100%	1.60	2.40	2.
Cyanide, Total	3		0%	i		5.0
ead	3	2	67%	0.44	0.59	0.4
Mercury	3	-	0%	· 'I		0.0
Vickel	š		0%			4.
Selenium	3	1	33%	0.48	0.48	0.:
Silver	3	1	0%	0.43	5.45	0.0
Zinc	3	3	100%	21.00	52.00	36.
	ا "	3	100%	21.00	32.00	36.
6 Lipid	3	3	100%	0.09	0.12	0.
CB, ug/kg			100%		0.12	<u> </u>
Decachlorobiphenyl	3		0%	1		25.
Dichlorobiphenyl			0%			
	3					5.
leptachlorobiphenyl	3		0%	ŀ		15.
lexachlorobiphenyl	3		0%	l l		10.
Aonochlorobiphenyl	3		0%	i i		5.
lonachlorobiphenyl	3		0%			25.
Octachlorobiphenyl	3	ł	0%	}		15.0
Pentachlorobiphenyl	3		0%	į		10.0
etrachlorobiphenyl	3		0%			10.0
richlorobiphenyl	3		0%			5.0
otal PCBs						
esticides, ug/kg	3		0%			9.9
4'-DDD	3	i	0%	ŀ		9.9
,4'-DDE	3		. 0%			9.9
4'-DOT	3		0%	Ī		5.1
Jdrin I	3		0%	1		5.1
lipha Chlordane	3		0%			5.1
ipha-BHC	3		0%			5.
eta-BHC	3		0%	Į.		5.
elta-BHC	3		0%	į		9.
Dieldrin	š		0%			5.
ndosulfan I	3		0%	l.		9.
ndosulfan II	3		0%			9.
ndosulfan sulfate	3		0%	ļ		9.
ndrin	3		0%	ļ		9.
ndrin aldehyde	3		0%	i		9.
ndrin ketone	3		0%	İ		5.
Samma Chlordane	3		0%	1	1	5.
amma-BHC (Lindane)	3		0%	l		5.
leptachlor	3		0%	ļ		_5.
leptachlor epoxide	3		0%			51.
lethoxychlor	3		0%	i		263.
oxaphene	3		0%			85.
VOCs, ug/kg						
,2,4-Trichlorobenzene	3		0%			
2-Dichlorobenzene	3		0%			
3-Dichlorobenzene	3		0%			
4-Dichlorobenzene	3		0%			
2'-Oxybis(1-chloropropane)(bis(2-Chlor	š		0%			
4,5-Trichlorophenol	3		ŏ%			1
4.6-Trichlorophenol	3	ľ	0%	ı		
4-Dichlorophenol	3		0%	1		
	3		0%	I		
4-Dimethylphenol		ļ		I		;
4-Dinitrophenol	3	ļ	0%	ŀ		
4-Dinitrotoluene	3	ţ	0%	İ		
6-Dinitrotoluene	3	1	0%	I		
Chloronaphthalene	3	1	0%	I		
Chlorophenol	3	1	0%	I		;
Methyl-4,6-dinitrophenol	3	1	0%	I		
Methylnaphthalene	3	Į.	0%	I		
Methylphenol (o-cresol)	3		0%			:
Nitroaniline	3		0%			1
Nitrophenol	3	ļ	0%			
14-Methylphenol (m&p-cresol)	3	Ì	0%	I		
First State Control of the Control o	3					1
3'-Dichlorobenzidine			0%			

Appendix C-3 Reference Area Clam Summary Statistics Sauget Area I

Compounds	Number Analyzed	Number Detected	Frequency of Detection	Minimum Detected	Maximum Detected	Average Concentration
I-Bromophenylphenyl ether	3	Detected	0%	Detected	Detected	B
I-Chloro-3-methylphenol	3		0%			8
I-Chloroaniline	1 3		0%			8
-Chlorophenylphenyl ether	3		0%			21
I-Nitroaniline	3		0%			21
-Nitrophenol	3		0%	ľ		8
cenaphthene	1 3		0%			8
kcenaphthylene	3		0%			8
Inthracene	3 1		0%			8
Benzo(a)anthracene	3		0%	- 1		8
Benzo(a)pyrene	3		0%			8
Benzo(b)fluoranthene	3		0%			8
Benzo(g,h,i)perylene	3		0%			8
Benzo(k)fluoranthene	1 3		0%			8
is(2-Chloroethoxy)methane	3		0%			8
is(2-Chloroethyl)ether	3	3	100%	47.00	73.00	6
is(2-Ethylhexyl)phthalate	1 3	_	0%		, 0.00	8
Butylbenzylphthalate	3		0%			ě
arbazole	3		0%			8
hrysene	3		0%			ě
N-n-bulylphthalate] 3		0%	ļ		8
i-n-octylphihalate	3		0%			8
Dibenzo(a,h)anthracene	3		0%			8
Dibenzofuran	3	3	100%	49.00	59.00	5
iethylphthalate	3	3	0%	43.00	39.00	8
imethylphthalate	~ 3		0%			8
luoranthene] 3		0%	ŀ		8
kuorene				•		
exachlorobenzene	3		0%	1		8
	3		0%			
exachlorobutadiene	3		0%	ŧ		8
exachlorocyclopentadiene	_ 3		0%	Í		8
exachloroethane	3		0%	j		8
ideno(1,2,3-cd)pyrene	3		0%			8
ophorone	3		0%	1		8
-Nitrosodi-n-propylamine	3		0%	ì		8
-Nitrosodiphenylamine/Diphenylamine	3		0%	1		8
aphthalene	3		0%	1		8
itrobenzene	3		0%			210
entachlorophenol	3		0%			8
henanthrene	. 3		0%	1		8
henol	3		0%			8:
yrene	3	3	100%	0.01	0.01	0.01
TECHNIC TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE			·	i		
otal PAHs						
loxins and Furans, ug/kg	1 -1					
2,3,4,6,7,8,9-OCDD	3	3	100%	0.0068	0.0124	0.009
2,3,4,6,7,8,9-OCDF	3	11	33%	0.0018	0.0018	0.0008
2,3,4,6,7,8-HpCDD	3	2	67%	0.00059	0.001	0.000663333
2,3,4,6,7,8-HpCDF	3		0%			0.00016666
2,3,4,7,8,9-HpCDF	3		0%			0.0002
2,3,4,7,8-HxCDD	3		0%			0.00016666
2,3,4,7,8-HxCDF	3		0%			0.000
2,3,6,7,8-HxCDD	3	į	0%			0.00016666
2,3,6,7,8-HxCDF] 3	ł	0%			0.000
2,3,7,8,9-HxCDD	3	1	0%			0.000
2,3,7,8,9-HxCDF	3	1	0%			0.0001
2,3,7,8-PeCDD	3	Í	0%			0.0001
2,3,7,8-PeCDF	3	i i	0%			0.000
3,4,6,7,8-HxCDF	3	l	0%	l		0.000
3,4,7,8-PeCDF	3	1	0%	- 1		0.000
3,7,8-TCDD	3		0%	l	l	0.000
3,7,8-TCDF	1					
3,7,8-TCDF	3	1	33%	0.00025	0.00025	0.00016666
xal HpCDO] 3	ż	67%	0.0011	0.0024	0.001
Mai HpCDF	1 3	- 1	0%	3.55,1	0.0024	0.000
ital HxCDD	3	1	33%	0.00026	0.00026	0.0002
Mail HxCDF	3	'1	0%	0.00020	3.0020	0.0002
otal PeCDD	3		0%	l		
		ا ۾		0.00025	0.0001	0.0001
tal PeCDF	3 3	2 3	67%	0.00025	0.0021	0.00081666
	, 71	3	100%	0.00007	0.0037	0.00202333
tal TCDD tal TCDF	3	2	67%	0.0014	0.0017	0.00106666

Appendix C-4
Summary Statistics for Background Surface Soil
Sauget Area I

					Number of Samples
Area	Medium	Method	Constituent	Units	Analyzed
Background	Surface Soil	8280A	1998 Total TEQ w/ EMPC as ND	ppb	3
Background	Surface Soil	HERB	MCPP[2-(4-chloro-2-methylphenoxy)-propan	ug/kg dw	3
Background	Surface Soil	HERB	2,4,5-TP (Silvex)	ug/kg dw	3
Background	Surface Soil	HERB	MCPA[(4-chloro-2-methylphenoxy)-acetic a	ug/kg dw	3
Background	Surface Soil	METALS	Aluminum	mg/kg dw	3
Background	Surface Soil	METALS	Iron	rng/kg dw	3
Background	Surface Soil	METALS	Lead	mg/kg dw	3
Background	Surface Soil	METALS	Magnesium	mg/kg dw	3
Background	Surface Soil	METALS	Manganese	mg/kg dw	3
Background	Surface Soil	METALS	Mercury	mg/kg dw	3
Background	Surface Soil	METALS	Molybdenum	mg/kg dw	3
Background	Surface Soil	METALS	Nickel	mg/kg dw	3
Background	Surface Soil	METALS	Potassium	mg/kg dw	3
Background	Surface Soil	METALS	Silver	mg/kg dw	3
Background	Surface Soil	METALS	Sodium	mg/kg dw	3
Background	Surface Soil	METALS	Antimony	mg/kg dw	1
Background	Surface Soil	METALS	Arsenic	mg/kg dw	3
Background	Surface Soil	METALS	Barium	mg/kg dw	3
Background	Surface Soil	METALS	Beryllium	mg/kg dw	3
Background	Surface Soil	METALS	Cadmium	mg/kg dw	3
Background	Surface Soil	METALS	Chromium	mg/kg dw	3
Background	Surface Soil	METALS	Cobalt	mg/kg dw	3
Background	Surface Soil	METALS	Copper	mg/kg dw	3
Background	Surface Soil	METALS	Vanadium	mg/kg dw	3
Background	Surface Soil	METALS	Zinc	mg/kg dw	3
Background	Surface Soil	METALS	Calcium	mg/kg dw	3
Background	Surface Soil	PCB	Total PCBs	ug/kg dw	3
Background	Surface Soil	PEST	4,4'-DDT	ug/kg dw	3
Background	Surface Soil	PEST	4,4'-DDE	ug/kg dw	3
Background	Surface Soil	SVOA	bis(2-Ethylhexyl)phthalate	ug/kg dw	3
Background	Surface Soil	SVOA	Anthracene	ug/kg dw	3
Background	Surface Soil	SVOA	Pyrene	ug/kg dw	3
Background	Surface Soil	SVOA	Benzo(g.h.i)perylene	ug/kg dw	3
Background	Surface Soil	SVOA	Benzo(b)fluoranthene	ug/kg dw	3
Background	Surface Soil	SVOA	Fluoranthene	ug/kg dw	3
Background	Surface Soil	SVOA	Benzo(k)fluoranthene	ug/kg dw	3
Background	Surface Soil	SVOA	Chrysene	ug/kg dw	3
Background	Surface Soil	SVOA	Benzo(a)pyrene	ug/kg dw	3
Background	Surface Soil	SVOA	Benzo(a)anthracene	ug/kg dw	3
Background	Surface Soil	SVOA	Diethylphthalate	ug/kg dw	3
Background	Surface Soil	SVOA	Di-n-butylphthalate	ug/kg dw	3
Background	Surface Soil	SVOA	Phenanthrene	ug/kg dw	3
Background	Surface Soil	SVOA	Carbazole	ug/kg dw	3
Background	Surface Soil	SVOA	Pentachiorophenoi	ug/kg dw	3
Background	Surface Soil	VOA	2-Hexanone	ug/kg dw	3
Background	Surface Soil	VOA	Methylene chloride (Dichloromethane)	ug/kg dw	3

Appendix C-4
Summary Statistics for Background Surface Soil
Sauget Area I

				Shapiro-Wilke's Test for No	ormality(a)	Sum	mary Statistics	<u> </u>
Number of	Frequency of	Number of Samples for					İ	
Detects	Detection	Statistics	Normal	Lognormal	Dataset Distribution	Minimum	Mean	Maximum
3	100%	3	0.77	0.87	Lognormal	0.0047	0.062	0.17
3	100%	3	0.87	0.83	Normal	2500	4983	6550
3	100%	3	0.97	0.93	Normal	5.8	8.7	11
3	100%	3	0.76	0.77	Lognormal	4300	7250	13000
3	100%	3	0.93	0.97	Lognormal	8100	12700	19000
3	100%	3	0.89	0.92	Lognormal	15000	19000	25000
3	100%	3	0.96	1.00	Lognormal	24	93	180
3	100%	3	0.88	0.97	Lognormal	3200	8617	17000
3	100%	3	0.80	0.81	Lognormal	390	442	535
3	100%	3	0.99	1.00	Lognormal	0.044	0.089	0.14
3	100%	3	0.94	0.97	Lognormal	0.72	1.0	1.4
3	100%	3	1.00	1.00	Normal	15	21	28
3	100%	3	1.00	0.99	Normal	1300	2367	3500
2	67%	3	0.97	1.00	Lognormal	0.33	0.68	1.1
1	33%	3	0.77	0.82	Lognormal	50	288	750
1	100%	1	NC	NC	NC	1.9	1,9	1.9
3	100%	3	0.98	1.00	Lognormal	6.6	9.6	13
3	100%	3	0.94	0.90	Normal	110	182	235
3	100%	3	0.99	1.00	Lognormal	0.45	0.75	1.10
3	100%	3	0.94	0.98	Lognormai	0.52	4.3	9.4
3	100%	3	0.75	0.75	Lognormal	17	20	25
3	100%	3	0.98	1.00	Lognormal	5.5	7.8	10
3	100%	3	0.97	1.00	Lognormal	35	105	190
3	100%	3	0.88	0.91	Lognormal	28	35	45
3	100%	3	0.95	0.99	Lognormal	82	404	820
3	100%	3	0.80	0.89	Lognormal	4000	16767	40000
2	67%	3	0.78	0.99	Lognormal	10	600	1706
1	33%	3	0.76	0.78	Lognormal	2	7.1	17
1	33%	3	0.76	0.78	Lognormal	2	8.1	20
2	67%	3	0.77	0.79	Lognormal	105	161	268
1	33%	1	NC	NC	NC	80	80	80
2	67%	3	0.94	0.99	Lognormal	113	218	360
2	67%	2	1.00	1.00	Lognormal	45	64	82
2	67%	2	1.00	1.00	Lognormal	69	90	110
2	67%	3	0.93	0.99	Lognormal	113	251	440
2	67%	3	0.97	0.93	Normal	60	104	140
2	67%	3	0.86	0.90	Lognormal	97	137	200
2	67%	3	0.83	0.87	Lognormal	60	93	150
2	67%	3	0.98	1.00	Lognormal	77	120	170
3	100%	3	0.75	0.75	Normal	60	93	110
2	67%	3	0.85	0.88	Lognormal	105	156	240
2	67%	3	0.80	0.83	Lognormal	100	168	290
1	33%	1	NC	NC	NC NC	32	32	32
2	67%	3	0.85	0.89	Lognormal	255	371	561
1	33%	3	0.94	0.93	Normal	255 15	17	18
2	67%	3	0.87	0.97	Lognormal	1.7	5.7	12

Appendix C-4

Summary Statistics for Background Surface Soil

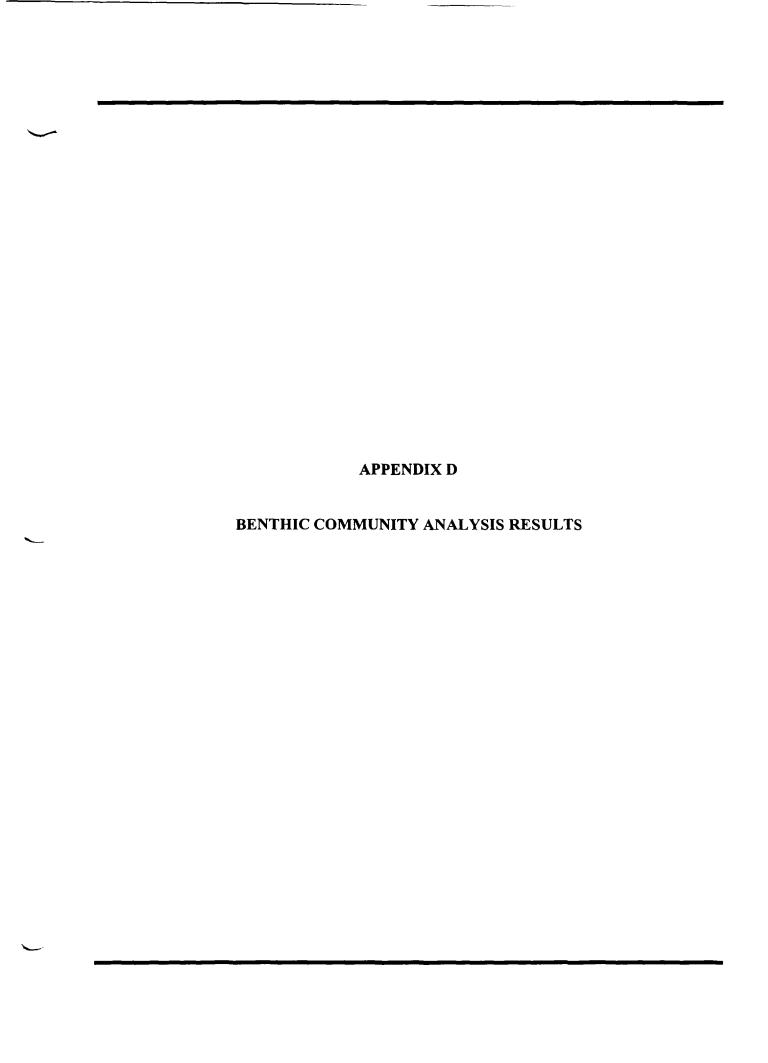
Sauget Area I

95%	Upper Confider	ce Limit	
	1	1	
t-Test	H-Test	UCL (b)	Site Concentration (c)
0.223	9.55E+13	9.6E+13	0.17
8650	68736	8650	6550
13.1	25.1	13	11
15646	292736	292736	13000
22217	72950	72950	19000
27921	39542	39542	25000
227	1379198	1379198	180
21029	7465777	7465777	17000
578	657	657	535
0.170	2.06	2.1	0.14
1.60	3.02	3.0	1.4
32.3	55.4	32	28
4224	23958	4224	3500
1.34	22.0	22	1.1
962	3.67E+11	3.7E+11	750
NC	NC	NC	1.9
15.0	29.0	29	13
290	820	290	235
1.30	4.90	4.9	1.1
12.0	2.50E+09	2.5E+09	9.4
27.5	34.3	34	25
11.9	20.9	21	10
237	89789	89789	190
49.3	65.3	65	45
1041	1.23E+08	1.2E+08	820
50743	1.95E+10	2.0E+10	40000
2216	1.91E+30	1.9E+30	1706
21.6	6841810	6841810	17
25.5	72182392	72182392	20
317	2148	2148	268
NC	NC	NC	80
433	5367	5367	360
180	NC	NC	82
219	NC	NC	110
537	20368	20368	440
173	642	173	140
230	542	542	200
176	883	883	150
199	525	525	170
142	303	142	110
280	951	951	240
347	4038	4038	290
NC NC	NC	NC	32
650	1897	1897	561
20	21	20	18
15	58320	58320	12

Appendix C-4
Summary Statistics for Floodplain Surface Soil
Sauget Area I

Area	Medium	Marked	Constituent	Units	Number of Samples	Number of Detects	Frequency of Detection	Number of Sample
	Surface Soil	Method 8280A	1998 Total TEQ w/ EMPC as ND		Analyzed 29		100%	for Statistics
Combined Combined	Surface Soil	HERB	Dicamba	ug/kg dw ug/kg dw	29 65	29 15	23%	29 16
Combined	Surface Soil	HERB	MCPP	ug/kg dw	65	10	15%	65
Combined	Surface Soil	HERB	MCPA	ug/kg dw	65	13	20%	65
Combined	Surface Soil	HERB	2,4-D	ug/kg dw	65	1	2%	2
Combined	Surface Soil	HERB	2,4-DB	ug/kg dw	65	4	6%	65
Combined	Surface Soil	METALS	Aluminum	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Iron	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Lead	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Magnesium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Manganese	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Mercury	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Molybdenum	mg/kg dw	65	64	98%	65
Combined	Surface Soil	METALS	Nickel	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Potassium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Silver	mg/kg dw	65	32	49%	65
Combined	Surface Soil	METALS	Thallium	mg/kg dw	65	17	26%	65
Combined	Surface Soil	METALS	Antimony	mg/kg dw	65	27	42%	65
Combined	Surface Soil	METALS	Arsenic	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Barium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Beryflium	mg/kg dw	65	55	85%	65
Combined	Surface Soil	METALS	Cadmium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Chromium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Cobalt	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Copper	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Vanadium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Zinc	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Calcium	mg/kg dw	65	65	100%	65
Combined	Surface Soil	METALS	Selenium	mg/kg dw	65	16	25%	65
Combined	Surface Soil	PCB	Total PCBs	ug/kg dw	65	53	82%	65
Combined	Surface Soil	PEST	Heptachlor epoxide	ug/kg dw	65	16	25%	65
Combined	Surface Soil	PEST	Endosulfan sulfate	ug/kg dw	65	12	18%	40
Combined	Surface Soil	PEST	Aldrin	ug/kg dw	65	1	2%	65
Combined	Surface Soil	PEST	alpha-BHC	ug/kg dw	65	1	2%	1
Combined	Surface Soil	PEST	beta-BHC	ug/kg dw	65	7	11%	65
Combined	Surface Soil	PEST	delta-BHC	ug/kg dw	65	5	8%	5
Combined	Surface Soil	PEST	Endosulfan II	ug/kg dw	65	1	2%	1
Combined	Surface Soil	PEST	4,4'-DDT	ug/kg dw	65	31	48%	65
Combined	Surface Soil	PEST	Alpha Chlordane	ug/kg dw	65	13	20%	65
Combined	Surface Soil	PEST	Gamma Chlordane	ug/kg dw	65	14	22%	65
Combined	Surface Soil	PEST	Endrin ketone	ug/kg dw	65	24	37%	61
Combined	Surface Soil	PEST	gamma-BHC (Lindane)	ug/kg dw	65	2	3%	2
Combined	Surface Soil	PEST	Dieldrin	ug/kg dw	65	19	29%	65
Combined	Surface Soil	PEST	Endrin	ug/kg dw	65	4	6%	60
Combined	Surface Soil	PEST	Methoxychlor	ug/kg dw	65	24	37%	62
Combined	Surface Soil	PEST	4,4'-DDD	ug/kg dw	65	5	8%	65
Combined	Surface Soil	PEST	4,4'-DDE	ug/kg dw	65	35	54%	65
Combined	Surface Soil	PEST	Endrin aldehyde	ug/kg dw	65	3	5%	60
Combined	Surface Soil	PEST	Heptachlor	ug/kg dw	65	4	6%	65
Combined	Surface Soil	SVOA	bis(2-Ethylhexyl)phthalate	ug/kg dw	65	19	29%	65
Combined	Surface Soil	SVOA	Anthracene	ug/kg dw	65	15	23%	65
Combined	Surface Soil	SVOA	Pyrene	ug/kg dw	65	32	49%	65
Combined	Surface Soil	SVOA	Dibenzofuran	ug/kg dw	65	5	8%	65
Combined	Surface Soil	SVOA	Benzo(g,h,i)perylene	ug/kg dw	65	24	37%	65
Combined	Surface Soil	SVOA	Indeno(1,2,3-cd)pyrane	ug/kg dw	65	18	28%	65
Combined	Surface Soil	SVOA	Benzo(b)fluoranthene	ug/kg dw	65	36	55%	65
Combined	Surface Soil	SVOA	Fluoranthene	ug/kg dw	65	39	60%	65
Combined	Surface Soil	SVOA	Benzo(k)fluoranthene	ug/kg dw	65	26	40%	65
Combined	Surface Soil	SVOA	Acenaphthylene	ug/kg dw	65	4	6%	4
Combined	Surface Soil	SVOA	• •		65	41	63%	65
Combined	Surface Soil	SVOA	Chrysene Benzova hovene	ug/kg dw	65	26	40%	65
Combined	Surface Soil		Benzo(a)pyrene	ug/kg dw			1	65
		SVOA	Dibenzo(a,h)anthracene	ug/kg dw	65 65	12 37	18%	
Combined	Surface Soil	SVOA	Benzo(a)anthracene	ug/kg dw	65 65		57%	65 85
Combined Combined	Surface Soil Surface Soil	SVOA SVOA	Acenaphthene Diethylphthalate	ug/kg dw ug/kg dw	65 65	9 1	14% 2%	65
								1

Appendix C-4
Summary Statistics for Floodplain Surface Soil
Sauget Area I


Area	Medium	Method	Constituent	Units	Number of Samples Analyzed	Number of Detects	Frequency of Detection	Number of Samples for Statistics
Combined	Surface Soil	SVOA	Phenanthrene	ug/kg dw	65	34	52%	65
Combined	Surface Soil	SVOA	Butylbenzylphthalate	ug/kg dw	65	3	5%	65
Combined	Surface Soil	SVOA	Fluorene	ug/kg dw	65	7	11%	65
Combined	Surface Soil	SVOA	Carbazole	ug/kg dw	65	11	17%	65
Combined	Surface Soil	SVOA	Pentachlorophenol	ug/kg dw	65	36	55%	65
Combined	Surface Soil	SVOA	Naphthalene	ug/kg dw	65	2	3%	2
Combined	Surface Soil	SVOA	2-Methylnaphthalene	ug/kg dw	65	3	5%	3
Combined	Surface Soil	VOA	Ethylbenzene	ug/kg dw	65	1	2%	47
Combined	Surface Soil	VOA	Toluene	ug/kg dw	65	13	20%	65
Combined	Surface Soil	VOA	Chlorobenzene	ugkg dw	65	1	2%	64
Combined	Surface Soil	VOA	Xylenes, Total	ug/kg dw	65	1	2%	65
Combined	Surface Soil	VOA	2-Hexanone	ug/kg dw	65	3	5%	3
Combined	Surface Soil	VOA	Acetone	ug/kg dw	65	32	49%	65
Combined	Surface Soil	VOA	Benzene	ug/kg dw	65	5	8%	65
Combined	Surface Soil	VOA	Methylene chloride (Dichloromethane)	ug/kg dw	65	3	5%	8
Combined	Surface Soil	VOA	Carbon disulfide	ug/kg dw	65	3	5%	65
Combined	Surface Soil	VOA	2-Butanone (MEK)	ug/kg dw	65	23	35%	65
Combined	Surface Soil	VOA	Trichloroethene	ug/kg dw	65	4	6%	65

Appendix C-4
Summary Statistics for Floodplain Surface Soil
Sauget Area I

Shapire	o-Wilke's Test f	or Normality(a)		ummary Statistics		95%	Upper Confidence	Limit	1
									1
Normal	Lognormal	Dataset Distribution	Minimum	Mean	Maximum	t-Test	H-Test	UCL (b)	Site Concentration (c)
0.57	0.96	Lognormal	0.0014	0.0083	0.052	0.0114	0.0107	0.011	0.011
0.44	0.75	Lognormal	13	3.6	23	5.94	4.90	4.9	4.9
NA, n>50	NA, n>50	Lognormal	1000 1000	1736 1663	7700 7400	2050 1935	1859 1784	185 9 1784	1859
NA, n>50 1.00	NA, n>50 1.00	Lognormai Lognormai	3.6	6.6	9.6	25.5	NC	NC	1784
1.00 NA, л>50	NA, n>50	Lognormal	4.3	6.4	9.0 41	25.5 7.72	6.62	6.6	9.6 6.6
NA, n>50	NA, n>50	Lognormal	3300	9391	18000	10046	10122	10122	10122
NA, n>50	NA, n>50	Lognormal	4100	15327	25000	16112	16348	16348	16348
NA, n>50	NA, n>50	Lognormal	24	71	260	79.5	79	79	79
NA, n>50	NA, n>50	Lognormal	2800	5953	21000	6692	6448	6448	6448
NA, n>50	NA, n>50	Lognormal	120	398	1200	429	429	429	429
NA, n>50	NA, n>50	Lognormal	0.027	0.076	0.57	0.0899	0.0809	0.081	0.081
NA, n>50	NA, n>50	Lognormal	0.22	0.73	3.2	0 832	0.814	0.81	0.81
NA, n>50	NA, n>50	Lognormal	12	19	55	20.3	20.0	20	20
NA, n>50	NA, n>50	Lognormal	1200	2017	3800	2134	2135	2135	2135
NA, n>50	NA, n>50	Lognormal	0.20	0.45	0.60	0.476	0.486	0.49	0.49
NA, n>50	NA, n>50	Lognormal	0.49	0.64	1.4	0.685	0.677	0.68	0.68
NA, n>50	NA, n>50	Lognormal	0.32	1.1	2.6	1.23	1.24	1.2	1.2
NA, n>50	NA, n>50	Lognormal	2.6	7.4	34	8.18	7.88	7.9	7.9
NA, n>50	NA, n>50	Lognormal	40	186	1200	214	198	198	198
NA, n>50	NA, n>50	Lognormal	0.17	0.56	1.1	0.607	0.619	0.62	0.62
NA, n>50	NA, n>50	Lognormal	0.46	2.4	8.4	2.72	2.77	2.8	2.8
NA, n>50	NA, n>50	Lognormal	11	17	49	18.3	17.9	18	18
NA, n>50	NA, n>50	Lognormai	2.3	6.6	11	6.94	7.01	7.0	7.0
NA, n>50	NA, n>50	Lognormal	18	70	230	79.3	81	81	81
NA, n>50	NA, n>50	Lognormal	13	28	120	31.0	30	30	30
NA, n>50	NA, n>50	Lognormal	76	294	1400	340	332	332	332
NA, n>50	NA, n>50	Lognormal	3500	26070	250000	35276	30365	30365	30365
NA, n>50	NA, n>50	Lognormal	0.48	0.63	3.2	0.707	0.661	0.66	0.66
NA, n>50	NA, n>50	Lognormal	7.50	64	385	77.1	90.4	90	90
NA, n>50	NA, n>50	Lognormal	0.090	1.7	30	2.54	2.04	2.0	2.0
0.66	0.62	Nomal	0.093	1.4	1.9	1.60	2.51	1.6	1.6
NA, n>50	NA, n>50	Lognormal	0.90	1.7	23	2.34	1.68	1.7	1.7
NC	NC	NC Lognormal	0.22	0.22 0.50	0.22	NC 0.638	NC 0.542	NC 0.54	0.22
NA, n>50 0.98	NA, n>50 0.96	Normal	0.10 0.082	0.50 0.16	3.8 0.24	0.628 0.216	0.542 0.282	0.54 0.22	0.54 0.22
NC	NC NC	NC	1.0	1.0	1.0	NC	NC	NC	1.0
NA, n>50	NA, n>50	Lognormal	0.12	8.8	140	14.3	7.95	8.0	8.0
NA, n>50	NA, n>50	Lognormal	0.16	2.7	54	4.19	2.55	2.6	2.6
NA, n>50	NA, n>50	Lognormal	0.10	4.1	78	8.77	3.26	3.3	3.3
NA, n>50	NA, n>50	Lognormal	0.12	1.6	4.9	1.83	2.56	2.6	2.6
1.00	1.00	Lognormal	0.087	0.11	0.13	0.244	NC	NC	0.13
NA, n>50	NA, n>50	Lognormal	0.089	4.3	120	7.32	3.86	3.9	3.9
NA, n>50	NA, n>50	Lognormal	0.10	2.0	6.1	2.13	2.31	2.3	2.3
NA, n>50	NA, n>50	Lognormal	0.93	8.7	38	9.92	11.6	12	11.6
NA, n>50	NA, n>50	Lognormal	0.56	3.0	36	3.93	3.01	3.0	3.0
NA, n>50	NA, n>50	Lognormal	0.086	3.2	54	4.76	4.04	4.0	4.0
NA, n>50	NA, π>50	Lognormal	0.24	20	5.1	2.10	2.16	2.2	2.2
NA, n>50	NA, n>50	Lognormal	0.34	28	91	5.11	1.98	2.0	2.0
NA, n>50	NA, n>50	Lognormal	29	104	430	116	111	111	111
NA, n>50	NA, n>50	Lognorma!	26	158	2300	225	152	152	152
NA, n>50	NA, n>50	Lognormal	72	533	8500	840	443	443	443
NA, n>50	NA, n>50	Lognormal	45	109	770	127	112	112	112
NA, n>50	NA, n>50	Lognormal	38	197	2200	267	201	201	201
NA, n>50	NA, n>50	Lognormal	51	192	2000	255	195	195	195
NA, n>50	NA, n>50	Lognormal	27	303	4400	455	282	282	282
NA, n>50	NA, n>50	Lognormal	37	648	10000	1029	558	558	558
NA, n>50	NA, n>50	Lognormal	37	272	3400	401	249	249	249
0.96	0.99	Lognormal	24	46	75	71.6	174	174	75
NA, n>50	NA, n>50	Lognormal	28	340	4900	518	319	319	319
NA, n>50	NA, n>50	Lognormal	43	261	3600	399	226	226	226
NA, n>50	NA, n>50	Lognormal	26	89	810	116	90	90	90
NA, n>50	NA, n>50	Lognormal	23	293	4300	451	266	266	266
NA, n>50	NA, n>50	Lognormal	16	119	1200	149	124	124	124
NC	NC	NC	39	39	39	NC	NC	NC	39
	NA, n>50	Lognormal	32	95	170	98.4	100	100	100

Appendix C-4
Summary Statistics for Floodplain Surface Soil
Sauget Area I

Shapk	ro-Wilke's Test 1	or Normality(a)	S	Summary Statistics 95% Upper Confidence Limit					
		Ì			i i				
Normal	Lognormal	Dataset Distribution	Minimum	Mean	Maximum	t-Test	H-Test	UCL (b)	Site Concentration (c)
NA, n>50	NA, n>50	Lognormal	22	461	9200	764	366	366	366
NA, n>50	NA, n>50	Lognormal	57	100	340	106	103	103	103
NA, n>50	NA, n>50	Lognormal	44	126	1400	161	126	126	126
NA, n>50	NA, n>50	Lognormal	58	125	1000	156	127	127	127
NA, n>50	NA, n>50	Lognormal	221	287	740	284	278	278	278
1.00	1.00	Normal	41	60	79	180	NC	180	79
0.98	0.97	Lognormal	62	66	72	75.2	NC	NC	72
0.93	0.90	Normal	2.1	2.7	3.0	2.78	NC	2.8	2.8
NA, n>50	NA, n>50	Lognormal	2.1	3.2	12	3.48	3.34	3.3	3.3
NA, n>50	NA, n>50	Lognormal	2.1	2.9	4.0	2.95	2.95	3.0	3.0
NA, n>50	NA, n>50	Lognormal	2.1	2.9	4.2	2.99	2.99	3.0	3.0
0.85	0.84	Normal	4.8	6.1	6.9	8.01	9.73	8.0	6.9
NA, n>50	NA, n>50	Lognormal	21	177	670	216	283	283	283
NA, n>50	NA, n>50	Lognormal	1.8	2.9	4.8	2.97	2.97	3.0	3.0
0.9075	0.9062	Normal	1.8	2.2	2.4	2.36	2.40	2.4	2.4
NA, n>50	NA, n>50	Lognormal	2.1	2.9	4.3	2.99	2.98	3.0	3.0
NA, n>50	NA, n>50	Lognormal	9.1	19	47	21.0	20.9	21	21
NA, n>50	NA, n>50	Lognormal	2.1	3.0	6.2	3.09	3.07	3 1	3.1

Appendix D
Benthic MacroInvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas
Sauget Area I

a de la constant					A CONTRACTOR OF THE PARTY OF TH				Number of			
Station ID	Phylum ⁷	Class	Order	Family	Sub-Family	Tribe	Genus	Species	Organisms Counted	Amount of Sample Analyzed (%)	Sample Total	Relative Abundance (Percent)
F-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	5	50	10	19.23
F-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Einfeldia	Sp.	4	50	8	15.38
F-1-1	Annelida	Oligochaeta	Tubificida	Naididae	Crim Criminal		Branchiura	sowerbyi	3	50	6	11.54
F-1-1	Arthropoda	insecta	Diptera	Ceratopogonidae			Culicoides	Sp.	3	50	6	11.54
F-1-1	Mollusca	Pelecypoda	Prionodesmacea	Sphaeriidae			Sphaerium	sp.	2	50	4	7.69
F-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	claparedianus	1	50	2	3.85
F-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Haemonais	waldvogeli		50	2	3.85
F-1-1	Arthropoda	Insecta	Lepidoptera	Pyralidae		·	Acentria	SD.		50	2	3.85
F-1-1	Arthropoda	Insecta	Hemiptera	Pleidae			Neoplea	sp.		50	2	3.85
F-1-1	Arthropoda	Insecta	Coleoptera	Hydrophilidae			Hydrochus	SD.	1	50	2	3.85
F-1-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	Sp.		50	2	3.85
F-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	decorus		50	2	3.85
F-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	SD.	1	50	2	3.85
F-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	carinatus		50	2	3.85
F-1-2		Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus		17	50	34	56.67
F-1-2	Arthropoda		Prionodesmacea	Sphaeriidae	CIRCIOININGE	CINGROTHIN	Sphaerium	sp.	8	50	16	26.67
	Mollusca	Pelecypoda		Chironomidae	Chironominae	Chironomini	Polypedilum		3	50		
F-1-2	Arthropoda	Insecta	Diptera	Tubificidae	Chilonominae	Chironomini		illinoense		50	6	10.00
F-1-2	Annelida	Oligochaeta	Tubificida				Limnodrilus	claparedianus	1		2	3.33
F-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.		50	2	3.33
F-1-3	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	5	50	10	22.73
F-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Culicoldes	sp.	4	50	8	18.18
F-1-3	Mollusca	Pelecypoda	Prionodesmacea	Sphaeriidae			Musculium	sp.	4	50	8	18.18
F-1-3	Mollusca	Pelecypoda	Prionodesmacea	Sphaeriidae			Sphaerium	sp.	3	50	6	13.64
F-1-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	sp.	2	50	4	9.09
F-1-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	2	50	4	9.09
F-1-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	50	2	4,55
F-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	1	50	2	4.55
F-2-1	Arthropoda	insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.	7	50	14	38.89
F-2-1	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	55	50	10	27.78
F-2-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	3	50	6	16.67
F-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Coelotanypodini	Coelotanypus	scapularis_	1	50	2	5.56
F-2-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Bezzia	sp.	1	50	2	5.56
F-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	sp.	1	50	2	5.56
F-2-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	12	50	24	33.33
F-2-2	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	8	50	16	22.22
F-2-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.	8	50	16	22.22
F-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	sp.	2	50	4	5.56
F-2-2	Arthropoda	Insecta	Hemiptera	Pleidae			Neoplea	sp.	2	50	4	5.56
F-2-2	Arthropoda	Insecta	Hemiptera	Mesoveliidae			Mesovelia	sp.	1	50	2	2.78
F-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	1	50	2	2.78
F-2-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Culicoides	sp.	1	50	2	2.78
F-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Psectrotanypus	sp.	1	50	2	2.78
F-2-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	11	50	22	47.83
F-2-3	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	9	50	18	39.13
F-2-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.	2	50	4	8.70
F-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	1	50	2	4.35
F-3-1	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	28	50	56	53.85
F-3-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	14	50	28	26.92
F-3-1	Annelida	Oligochaeta	Tubificida	Tubificidae			llyodrilus	templetoni	3	50	6	5.77
F-3-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Krenopelopia	Sp.	2	50	4	3.85
F-3-1	Arthropoda	Insecta	Coleoptera	Dytiscidae			Hygrotus	Sp.	1	50	2	1.92
F-3-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Culicoides	Sp.	1	50	2	1.92
F-3-1	Arthropoda	Insecta	Diotera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	- i	50		1.92
F-3-1	Arthropoda	Insecta	Coleoptera	Hydrophilidae		J	Tropisternus	Sp.		50		1.92
F-3-1	Arthropoda	Insecta	Diptera	Stratiomyidae			Stratiomys	sp.	1	50		1.92
للنتنا	. a un opcoda	113000	D.D.0.0					·		- 32	-	1.02

Appendix D Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas Sauget Area I

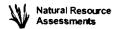
Station ID	Phylum	Class	Order	Family	Sub-Family	Tribe	Genus	Species	Number of Organisms Counted	Amount of Sample	Sample	Relative Abundance
F-3-2	Annelida	Oligochaeta	Tubificida	Tubificidae	- Suc-raining	11104	Limnodrilus	hoffmeisteri	31	Analyzed (%) 50	Total 62	(Percent)
F-3-2	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	27	50	54	45.59 39.71
F-3-2	Annelida	Oligochaeta	Tubificida	Tubificidae			livodrilus	templetoni		50	4	2.94
F-3-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	<u>-</u>	50		2.94
F-3-2	Mollusca	Gastropoda	Basommatophora	Physidae			Physelia	heterostropha	2	50	4	2.94
F-3-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Dero	vaga	1	50	2	1.47
F-3-2	Arthropoda	Insecta	Hemiptera	Corixidae	Corixinae		Trichocorixa	sp.	_ 	- 50	2	1.47
F-3-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.	<u></u>	50	2	1.47
F-3-2	Arthropoda	Insecta	Diptera	Tipulidae	—		Tipulidae (family)		_ 	50	2	1.47
F-3-3	Annelida	Oligochaeta	Tubificida	Naididae		··~	Branchiura	sowerbyi	26	50	52	44.07
F-3-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisterl	11	50	22	18.64
F-3-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	illinoense	10	50	20	16.95
F-3-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	Sp.	3	50	6	5.08
F-3-3	Arthropoda	Insecta	Diptera				Diptera (class)	- F	3	50	6	5.08
F-3-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae		Krenopelopia	SD.	3	50	6	5.08
F-3-3	Arthropoda	Insecta	Diptera	Tipulidae			Limonia	sp.	1	50	2	1.69
F-3-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	1	50	2	1.69
F-3-3	Mollusca	Gastropoda	Basommatophora	Physidae			Physella	heterostropha	1	50	2	1.69
BP-1-1	Arthropoda	Insecta	Odonata	Libellulidae			Perithemis	Sp.	5	50	10	29.41
BP-1-1	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	3	50	6	17.65
BP-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	3	50	6	17.65
BP-1-1	Arthropoda	Insecta	Hemiptera	Corixidae			Palmacorixa	sp.		50	4	11.76
BP-1-1	Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella	microstoma	1	50	2	5.88
BP-1-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	1	50	2	5.88
BP-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Natarsiini	Natersie	SD.	1	50	2	5.88
BP-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	50	2	5.88
BP-1-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisterl	4	50	8	17.39
BP-1-2	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	3	50	6	13.04
BP-1-2	Arthropoda	Insecta	Herniptera	Corixidae			Palmacorixa	Sp.	3	50	6	13.04
BP-1-2	Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella	microstoma	2	50	4	8.70
BP-1-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	2	50	4	8.70
BP-1-2	Arthropoda	Insecta	Ephemeroptera	Caenidae			Caenis	sp.	2	50	4	8.70
BP-1-2	Arthropoda	Insecta	Odonata	Libellulidae			Perithemis	Sp.	2	50	4	8.70
BP-1-2	Annelida	Oligochaeta	Tubificida	Naididae			Aulodrilus	pigueti	11	50	2	4.35
BP-1-2	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	1	50	2	4.35
BP-1-2	Arthropoda	Insecta	Trichoptera	Hydroptilidae	Hydroptilinae		Hydroptila	ajax	1	50	2	4.35
BP-1-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptotendipes	sp.	_ 1	50	2	4.35
BP-1-2	Arthropoda	Insecta	Odonata	Gomphidae			Arigomphus	sρ.	_ 1	50	2	4.35
BP-1-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	7	50	14	30.43
BP-1-3	Arthropoda	Insecta	Hemiptera	Corixidae	Corixinae		Trichocorixa	sp.	5	50	10	21.74
BP-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	2	50	4_	8.70
BP-1-3	Arthropoda	Insecta	Odonata	Libellulidae			Perithemis	sρ.	2	50	4	8.70
BP-1-3	Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella	microstoma	1	50	2	4.35
BP-1-3	Annelida	Oligochaeta	Tubificida	Tubificidae			llyodrilus	templetoni	1	50	2	4.35
BP-1-3	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	1	50	2	4.35
BP-1-3	Arthropoda	insecta	Ephemeroptera	Caenidae			Caenis	sp.	1	50	2	4.35
BP-1-3	Arthropoda	Insecta	Coleoptera	Hydrophilidae			Berosus	sp.	1	50	2	4.35
BP-1-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	50	2	4.35
BP-1-3	Nematoda		Dorylaimida				Alaimus	sp.	1	50	2	4.35
BP-2-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	27	50	54	47.37
BP-2-1	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	6	50	12	10.53
BP-2-1	Annelida	Oligochaeta	Tubificida	Tubificidae			llyodrilus	templetoni	5	50	10	8.77
BP-2-1	Annelida	Oligochaeta	Tubificida	Naididae			Aulodrilus	pigueti	4	50	8	7.02
BP-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	stellatus	3	50	6	5.26
BP-2-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	3	50	6	5.26
BP-2-1	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	2	50	4	3.51
BP-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Coelotanypodini	Clinotanypus	sp.	2	50	4	3.51
BP-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	2	50	4	3.51
BP-2-1	Arthropoda	Insecta	Odonata	Gomphidae			Arigomphus	sp.	1	50	2	1.75
	, , , , , , , , , , , , , , , , , , , 	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	salinarius	1	50	2	1.75
BP-2-1	' 'ropoda	IIISECIA	Diptora	CIMOROTINA	01111011011111100		Of the Office of	Jumanio		50		1,75

a**h**

Appendix D Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas Sauget Area I

		4.4	3, 4		V 2.			4-1-48	Number of Organisms	Amount of Sample	Sample	Relative Abundance
Station ID	Phylum	Class ·	Order	Family	Sub-Family	Tribe	Genus	Species	Counted	Analyzed (%)	Total	(Percent)
BP-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	13	50	26	44.83
BP-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			llyodrilus	templetoni	4	50	8	13.79
BP-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	salinarius	3	50	6	10.34
BP-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Procladiini	Procladius	sp.	3	50	6	10.34
BP-2-2	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	2	50	4	6.90
BP-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Coelotanypodini	Clinotanypus	sp.	2	50	4	6.90
BP-2-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	1	50	2	3.45
BP-2-2	Arthropoda	insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	50	2	3.45
BP-2-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	<u>hoffmeisteri</u>	18	50	36	40.00
BP-2-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	77	50	14	15.56
BP-2-3	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	6	50	12	13.33
BP-2-3	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	2	50	4	4.44
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	decorus	2	50	4	4.44
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Tanylarsus	sp.	2	50	4	4.44
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	stellatus	2	50	44	4,44
BP-2-3	Arthropoda	Insecta	Odonata	Gomphidae			Arigomphus	sp.	1	50	2	2.22
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cladopeima	sp.	1	50	2	2.22
BP-2-3	Arthropoda	insecta	Diptera	Chironomidae	Tanypodinae	Coelotanypodini	Clinotanypus	sρ	1	50	2	2.22
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Procladiini	Procladius	sp.	11	50	2	2.22
BP-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	50	2	2.22
BP-2-3	Arthropoda	Insecta	Diptera	Tipulidae		L	Tipulidae (family)		1	50	2	2.22
BP-3-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	42	100	42	50.00
BP-3-1	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	16	100	16	19.05
BP-3-1	Annelida	Oligochaeta	Tubificida	Naididae			Branchiura	sowerbyi	9	100	9	10.71
BP-3-1	Arthropoda	Insecta	Diptera	Ceratopogonidae		L	Ceratopogon	sp.	5	100	5	5.95
BP-3-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	4	100	4	4.76
BP-3-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	fulvus	3	100	3	3.57
BP-3-1	Arthropoda	Insecta	Odonata	Libellulidae			Perithemis	sp.	2	100	2	2.38
BP-3-1	Annelida	Oligochaeta	Tubificida	Naididae			Aulodrilus	pigueti	1	100	1	1.19
BP-3-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Coelotanypodini	Clinotanypus	sp.	1	100	1	1,19
BP-3-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.		100		1.19
BP-3-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	7	100	7	43.75
BP-3-2	Annelida	Oligochaeta	Tubificida	Naididae	ļ. ———		Branchiura	sowerbyi_	2	100	2	12.50
BP-3-2	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata		100		6.25
BP-3-2	Arthropoda	Insecta	Diptera	Ceratopogonidae		L	Ceratopogon	sp.	 	100	!	6.25
BP-3-2	Arthropoda	Insecta	Odonata	Libellulidae	<u> </u>		Plathemis	sp.	1	100	1	6.25
BP-3-2	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Tanylarsus	sp.	1	100	1	6.25
BP-3-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis		100	1	6.25
BP-3-2	Arthropoda	Insecta	Odonata	Libellulidae			Perithemis	sp.	11	100	1	6.25
BP-3-2	Arthropoda	Insecta	Diptera	Ceratopogonidae	ļ		Sphaeromias	sp.	1	100	1	6.25
BP-3-3	Annelida	Oligochaeta	Tubificida	Tubificidae	<u> </u>		Limnodrilus	hoffmeisteri	36	100	36	70.59
BP-3-3	Annelida	Oligochaeta	Tubificida	Naididae	ļ	 	Branchiura	sowerbyi	5	100	5	9.80
BP-3-3	Annelida	Oligochaeta	Tubificida	Naididae	 	<u> </u>	Dero	digitata	3	100	3	5.88
BP-3-3	Arthropoda	Insecta	Diptera	Ceratopogonidae	ļ	ļ	Ceratopogon	sp.	2	100	2	3.92
BP-3-3	Arthropoda	Insecta	Diptera	Ceratopogonidae	ļ	ļ	Bezzia	sp.		100		1.96
BP-3-3	Arthropoda	Insecta	Diptera	Chaoboridae	Chinamania	Chicagonisi	Chaoborus	punctipennis	1	100	1	1.96
BP-3-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptochironomus	fulvus		100	1	1.96
BP-3-3	Arthropoda	Insecta	Odonata	Libellulidae	*	Tangel die!	Perithemis	sp.	11	100		1.96
BP-3-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis		100	1 74	1.96
PDC-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae	ļ	L	Limnodrilus	hoffmeisteri	71	100	71	89.87
PDC-1-1	Annelida	Oligochaeta	Tubificida	Naididae	 	<u> </u>	Dero	digitata	2	100	2	2.53
PDC-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae	 		llyodrilus	templetoni	2	100	2	2.53
PDC-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae	 		Psammoryctides	californianus	2	100	2	2.53
PDC-1-1	Arthropoda	Insecta	Diptera	Ceratopogonidae	 	<u> </u>	Ceratopogon	sp.	1	100		1.27
PDC-1-1	Arthropoda	Insecta	Diptera	Chaoboridae	L	<u> </u>	Chaoborus	punctipennis		100		1.27
PDC-1-2	Annelida	Oligochaeta	Tubificida	Tubificidae	 		Limnodrilus	hoffmeisterl	4	100	4	66.67
PDC-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae	ļ		Ceratopogon	sp.	11	100	1	16.67
PDC-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Bezzia	sρ.	1	100	1	16.67
PDC-1-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	4	100	4	57.14
	Arthropoda	Insecta	Diptera	Ceratopogonidae	l		Ceratopogon	sp.	2	100	2	28.57
PDC-1-3	ALC: UN OPCOME									100		14.29

Appendix D
Benthic Macroinvertebrate Data for Dead Creek Sector F, the Borrow Pit Lake, and Reference Areas
Sauget Area I


	290Get Vies i												
Station ID	Phylum *	Class	Order	Family	A Sub-Family	edhī	Genus Ur	Species SI	Number of Counted	Amount of Sample	Sample Total	Relative Abundance	
PDC-2-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	3	100	3	75.00	
PDC-2-1	Mollusca	Pelecypoda	Prionodesmacea	Unionidae			Lampsilis	sp.	1	100	1	25.00	
PDC-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	30	100	30	83,33	
PDC-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			llyodrilus	templetoni	3	100	3	8.33	
PDC-2-2	Annelida	Oligochaeta	Tubricida	Naididae			Dero	digitala	1	100	1	2.78	
PDC-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Psammoryctides	californianus	1	100	1	2.78	
PDC-2-2	Arthropoda	Crustacea	Decapoda	Palaemonidae			Palaemonetes	kadiakensis	1	100	1	2.78	
PDC-2-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisterl	49	50	98	90.74	
PDC-2-3	Arthropoda	Insecta	Diptera	Chaoboridae			Chaoborus	punctipennis	2	50	4	3.70	
PDC-2-3	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	1	50	2	1,85	
PDC-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	decorus	1	50	2	1.85	
PDC-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Procladiini	Procladius	sp.	1	50	2	1.85	
REF2-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	149	10	1490	90.85	
REF2-1-1	Arthropoda	Insecta	Diptera	Ephydridae			Ephydra	subopaca	6	10	60	3.66	
REF2-1-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	2	10	20	1.22	
REF2-1-1	Arthropoda	Crustacea	Decapoda	Palaemonidae			Palaemonetes	kadiakensis	2	10	20	1.22	
REF2-1-1	Mollusca	Gastropoda	Basommatophora	Physidae			Physella	heterostropha	2	10	20	1.22	
REF2-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Nais	variabilis	1	10	10	0.61	
REF2-1-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	udekernianus	1	10	10	0.61	
REF2-1-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	1	10	10	0.61	
REF2-1-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	115	10	1150	89.15	
REF2-1-2	Mollusca	Gastropoda	Basommatophora	Physidae			Physella	heterostropha	3	10	30	2.33	
REF2-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	2	10	20	1.55	
REF2-1-2	Arthropoda	Insecta	Hemiptera	Corixidae	Corixinae		Trichocorixa	sp.	2	10	20	1.55	
REF2-1-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	2	10	20	1.55	
REF2-1-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Psammoryctides	californianus	1	10	10	0.78	
REF2-1-2	Annelida	Oligochaeta	Tubificida	Naididae			Aulodrīlus	pluriseta	1	10	10	0.78	
REF2-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sρ.	1	10	10	0.78	
REF2-1-2	Arthropoda	Insecta	Diptera	Ceratopogonidae			Culicoides	sρ.		10	10	0.78	
REF2-1-2	Arthropoda	insecta	Hemiptera	Corixidae			Sigara	sp.	1	10	10	0.78	
REF2-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Culicoides	sp.	60	10	600	40.27	
REF2-1-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	50	10	500	33.56	
REF2-1-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	28	10_	280	18.79	
REF2-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	5	10	50	3.36	
REF2-1-3	Annelida	Oligochaeta	Tubificida	Naididae			Aulodrīlus	pluriseta	2	10	20	1.34	
REF2-1-3	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	1	10	10	0.67	
REF2-1-3	Arthropoda	Insecta	Hemiptera	Corixidae	Corixinae		Trichocorixa	sp.	1	10	10	0.67	
REF2-1-3	Arthropoda	insecta	Diptera	Ceratopogonidae			Bezzia	sp.	1	10	10	0.67	
REF2-1-3	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sρ.	1	10	10	0.67	
REF2-2-1	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	22	100	22	59.46	
REF2-2-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon	sp.	8	100	8	21.62	
REF2-2-1	Annelida	Oligochaeta	Tubificida	Naididae			Dero	digitata	1	100	1	2.70	
REF2-2-1	Annelida	Oligochaeta	Tubificida	Naididae	I		Aulodrilus	pigueti	. 1	100	1	2.70	
REF2-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	100	1	2.70	
REF2-2-1	Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias	sp.	1	100	1	2.70	
REF2-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Tanytarsini	Tanytarsus	sp.	1	100	1	2.70	
REF2-2-1	Arthropoda	Insecta	Diptera	Tipulidae			Ormosia	sp.	1	100	1	2.70	
REF2-2-1	Arthropoda	Insecta	Diptera	Chironomidae	Orthocladiinae	Orthocladiini	Psectrocladius	sp.	1	100	1	2.70	
REF2-2-2	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	13	100	13	92.86	
REF2-2-2	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia	annulata	1	100	1	7.14	
REF2-2-3	Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus	hoffmeisteri	25	100	25	69.44	
REF2-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus	salinarius	8	100	8	22.22	
REF2-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Polypedilum	scalaenum	1	100	1	2.78	
REF2-2-3	Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Tanypodini	Tanypus	neopunctipennis	1	100	1	2,78	
REF2-2-3	Arthropoda	Insecta	Hemiptera	Corixidae	Corixinae		Trichocorixa	Sp.	1	100	 	2.78	
<u> </u>													

Pank

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

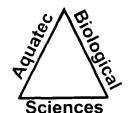
Laboratory Sample ID : 13012

Client Sample ID

Remarks

: F-1-1-"CREEK SECTOR F-1"

Date/Time Sample Collected : 10/7/99 @ 3:00:00 P


Percent Sample Examined

Sampling Depth (m) : Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Haemonais waldvogeli	1
			Tubificidae			Branchiura sowerbyi	3
						Limnodrilus claparedianus	1
usca	Pelecypoda	Prionodesmacea	Sphaeriidae			Sphaerium sp.	2
Arthropoda	Insecta	Coleoptera	Hydrophilidae			Hydrochus sp.	1
		Diptera	Ceratopogonidae			Ceratopogon sp.	1
						Culicoides sp.	3
			Chironomidae	Chironominae	Chironomini	Chironomus sp.	1
						Chironomus decorus	1
						Einfeldia sp.	4
						Polypedilum illinoense	5
				Tanypodinae	Tanypodini	Tanypus carinatus	1
		Hemiptera	Pleidae			Neoplea sp.	1
		Lepidoptera	Pyralidae			Acentria sp	1
						Sub-Tota	l: 26
						Grand Tota	

ABS

Page 67 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13013

Client Sample ID

Remarks

: F-1-2-"CREEK SECTOR F-1"

Date/Time Sample Collected

: 10/7/99 @ 3:00:00 P


Percent Sample Examined Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus claparedianus	1
Mollusca	Pelecypoda	Prionodesmacea	Sphaeriidae			Sphaerium sp.	8
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	1
			Chironomidae	Chironominae	Chironomini	Chironomus sp.	
						Polypedilum illinoense	5
	_					Sub-Total:	30
						Grand Total:	30

ABS

Page 68 of 7

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13014

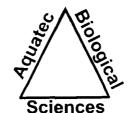
Client Sample ID

Remarks

: F-1-3-"CREEK SECTOR F-1"

Date/Time Sample Collected : 10/7/99 @ 3:00:00 P

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	5
Mollusca	Pelecypoda	Prionodesmacea	Sphaeriidae			Musculium sp.	4
						Sphaerium sp.	3
.ropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	1
						Culicoides sp.	4
			Chironomidae	Chironominae	Chironomini	Chironomus sp.	2
						Polypedilum illinoense	2
				Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
						Sub-Total:	22
						Grand Total:	22

ABS

Page 69 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13015

Client Sample ID Remarks

: F-2-1-"CREEK SECTOR F-2"


Date/Time Sample Collected

: 10/7/99 @ 4:10:00 P

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	5
Arthropoda	Insecta	Diptera	Ceratopogonidae			Bezzia sp.	1
						Ceratopogon sp.	3
						Sphaeromias sp.	
			Chironomidae	Chironominae	Chironomini	Chironomus sp.	~
				Tanypodinae	Coelotanypodini	Coelotanypus scapularis	1
	_					Sub-Total	18
			·····			Grand Total	18

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13016

Client Sample ID

Remarks

: F-2-2-"CREEK SECTOR F-2"

Date/Time Sample Collected

: 10/7/99 @ 4:10:00 P

Percent Sample Examined

: 50

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	8
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	12
						Culicoides sp.	1
						Sphaeromias sp	8
$\overline{}$			Chironomidae	Chironominae	Chironomini	Chironomus sp.	2
						Polypedilum illinoense	1
				Tanypodinae		Psectrotanypus sp.	1
		Hemiptera	Mesoveliidae			Mesovelia sp.	1
			Pleidae			Neoplea sp.	2
						Sub-Tota	n/: 36
						Grand Total	il: 36

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

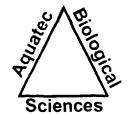
Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13017

Client Sample ID

: F-2-3-"CREEK SECTOR F-2"


Remarks

Date/Time Sample Collected : 10/7/99 @ 4:10:00 P

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	9
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	11
						Sphaeromias sp.	2
			Chironomidae	Chironominae	Chironomini	Polypedilum illinoense	
						Sub-Total	: 23
						Grand Total	: 23

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

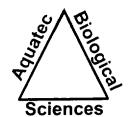
Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13018

Client Sample ID

Remarks


: F-3-1-"CREEK SECTOR F-3"

Date/Time Sample Collected : 10/7/99 @ 10:45:00

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Va	riety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi		28
						llyodrilus templetoni		3
						Limnodrilus hoffmeisteri		14
ropoda	Insecta	Coleoptera	Dytiscidae			Hygrotus sp.		1
\sim			Hydrophilidae			Tropisternus sp		1
		Diptera	Ceratopogonidae			Culicoides sp.		1
			Chironomidae	Chironominae	Chironomini	Polypedilum illinoense		1
				Tanypodinae		Krenopelopia sp.		2
			Stratiomyidae			Stratiomys sp.		1
						Sui	b-Total:	52
						Gran	d Total:	52

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 13019

Client Sample ID

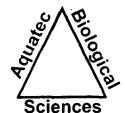
: F-3-2-"CREEK SECTOR F-3"

Remarks

Date/Time Sample Collected : 10/7/99 @ 10:45:00

Percent Sample Examined

Sampling Depth (m)


: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero vaga	1
			Tubificidae			Branchiura sowerbyi	27
						llyodrilus templetoni	2
						Limnodrilus hoffmeisteri	?
Mollusca	Gastropoda	Basommatophora	Physidae			Physella heterostropha	2
Arthropoda	Insecta	Diptera	Ceratopogonidae			Sphaeromias sp.	1
			Chironomidae	Chironominae	Chironomini	Polypedilum illinoense	2
			Tipulidae				1
		Herniptera	Corixidae	Corixinae		Trichocorixa sp.	1
						Sub-Total:	68
						Grand Total:	68

Submitted By:

ABS

Page 74 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12965

Client Sample ID

Remarks

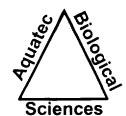
: F-3-3-"CREEK SECTOR F-3"

Date/Time Sample Collected

: 10/7/99 @ 10:45:00

Percent Sample Examined

: 50


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	26
						Limnodrilus hoffmeisteri	11
Mollusca	Gastropoda	Basommatophora	Physidae			Physella heterostropha	1
ropoda	Insecta	Diptera					3
•			Ceratopogonidae			Ceratopogon sp.	1
						Sphaeromias sp.	3
			Chironomidae	Chironominae	Chironomini	Polypedilum illinoense	10
				Tanypodinae		Krenopelopia sp.	3
			Tipulidae			Limonia sp.	1
						Sub-Total	59
						Grand Total	59

ABS

Page 20 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12985

Client Sample ID

Remarks

: BP-1-1-"BORROW PIT LAKE-1"

Date/Time Sample Collected : 10/6/99 @ 11:30:00

Percent Sample Examined

Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella microstoma	1
Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	3	
					Limnodrilus hoffmeisteri	3	
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	•
			Chironomidae	Tanypodinae	Natarsiini	Natarsia sp.	i
					Tanypodini	Tanypus neopunctipennis	1
		Hemiptera	Corixidae			Palmacorixa sp.	2
		Odonata	Libellulidae			Perithemis sp.	5
						Sub-Tota	1: 17
						Grand Tota	1: 17

ABS

Page 40 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12986

Date/Time Sample Collected

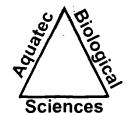
: 10/6/99 @ 11:30:00

Client Sample ID

: BP-1-2-"BORROW PIT LAKE -1"

Percent Sample Examined

: Not Reported


Remarks

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annetida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella microstoma	2
	Oligochaeta	Tubificida	Naididae			Dero digitata	3
			Tubificidae			Aulodrilus pigueti	1
						Branchiura sowerbyi	1
\smile						Limnodrilus hoffmeisteri	4
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Cryptotendipes sp.	1
				Tanypodinae	Tanypodini	Tanypus neopunctipennis	2
		Ephemeroptera	Caenidae			Caenis sp.	2
		Hemiptera	Corixidae			Palmacorixa sp.	3
•		Odonata	Gomphidae			Arigomphus sp.	1
			Libellulidae			Perithemis sp.	2
		Trichoptera	Hydroptilidae	Hydroptilinae		Hydroptila ajax	1
	_					Sub-Total:	23
						Grand Total:	23

ABS

Page 41 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12987

Client Sample ID

: BP-1-3-"BORROW PIT LAKE-1"

Remarks

Date/Time Sample Collected : 10/6/99 @ 11:30:00

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Nematoda		Dorylaimida				Alaimus sp.	1
Annelida	Hirudinea	Pharyngobdellida	Erpobdellidae			Mooreobdella microstoma	1
	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	1
					Ilyodrilus templetoni	4	
					Limnodrilus hoffmeisteri	·	
Arthropoda	Insecta	Coleoptera	Hydrophilidae			Berosus sp.	1
		Diptera	Ceratopogonidae			Ceratopogon sp.	2
			Chironomidae	Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
		Ephemeroptera	Caenidae			Caenis sp.	1
		Hemiptera	Corixidae	Corixinae		Trichocorixa sp.	5
		Odonata	Libellulidae			Perithemis sp.	2
						Sub-Total	: 23
						Grand Total	: 23

ABS

Page 42 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane Chelmsford, MA 01824 Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12995

Client Sample ID

Remarks

: BP-2-1-"BORROW PIT LAKE-2"

Date/Time Sample Collected

: 10/6/99 @ 9:30:00 A

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	6
			Tubificidae			Aulodrilus pigueti	4
						Branchiura sowerbyi	2
					llyodrilus templetoni	5	
$\overline{}$						Limnodrilus hoffmeisteri	27
Arthropoda	insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	3
						Culicoides sp.	1
			Chironomidae	Chironominae	Chironomini	Chironomus salinarius	1
				Tanypodinae	Coelotanypodini	Clinotanypus sp.	2
					Tanypodini	Tanypus neopunctipennis	2
						Tanypus stellatus	3
		Odonata	Gomphidae			Arigomphus sp.	1
						Sub-Total:	57
						Grand Total:	57

ABS

Page 50 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12988

Client Sample ID

: BP-2-2-"BORROW PIT LAKE-2"

Remarks

Date/Time Sample Collected : 10/6/99 @ 9:30:00 A

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Branchiura sowerbyi	2
						llyodrilus templetoni	4
						Limnodrilus hoffmeisteri	13
Arthropoda Insecta	Insecta	Diptera	Ceratopogonidae			Ceralopogon sp.	
			Chironomidae	Chironominae	Chironomini	Chironomus salinarius	5
				Tanypodinae	Coelotanypodini	Clinotanypus sp.	2
					Procladiini	Procladius sp.	3
					Tanypodini	Tanypus neopunctipennis	1
						Sub-Total:	29
· 						Grand Total:	29

ABS

Page 43 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12989

Client Sample ID

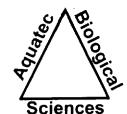
: BP-2-3-"BORROW PIT LAKE-2"

Remarks

Date/Time Sample Collected

: 10/6/99 @ 9:30:00 A

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	6
			Tubificidae			Branchiura sowerbyi	2
						Limnodrilus hoffmeisteri	18
ropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	7
			Chironomidae	Chironominae	Chironomini	Chironomus decorus	2
						Cladopelma sp.	1
					Tanytarsini	Tanytarsus sp.	2
				Tanypodinae	Coelotanypodini	Clinotanypus sp.	1
					Procladiini	Procladius sp.	1
				Tanypodini	Tanypus neopunctipennis	1	
						Tanypus stellatus	2
			Tipulidae				1
		Odonata	Gomphidae			Arigomphus sp.	1
						Sub-Tota	il: 45
						Grand Total	

ABS

Page 44 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12992

Client Sample ID

Remarks

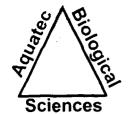
: BP-3-1-"BORROW PIT LAKE-3"

Date/Time Sample Collected

: 10/6/99 @ 4:30:00 P

Percent Sample Examined

: 100


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counter
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	16
			Tubificidae			Aulodrilus pigueti	1
						Branchiura sowerbyi	9
						Limnodnlus hoffmeisteri	•
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	~
						Sphaeromias sp.	1
			Chironomidae	Chironominae	Chironomini	Cryptochironomus fulvus	3
				Tanypodinae	Coelotanypodini	Clinotanypus sp.	1
					Tanypodini	Tanypus neopunctipennis	4
		Odonata	Libellulidae			Perithemis sp.	2
						Sub-Total:	84
						Grand Total:	84

ABS

Page 47 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane Chelmsford, MA 01824 **Date**

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

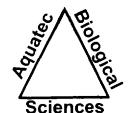
Reference: SAUGET,IL

Laboratory Sample ID : 12990

Client Sample ID

Remarks

: BP-3-2-"BORROW PIT LAKE-3"


Date/Time Sample Collected : 10/6/99 @ 4:30:00 P

Percent Sample Examined

: 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counte
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	1
		Tubificidae			Branchiura sowerbyi	2	
					Limnodrilus hoffmeisteri	7	
ropoda Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	1	
						Sphaeromias sp	1
			Chironomidae	Chironominae	Tanytarsini	Tanytarsus sp.	1
				Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
		Odonata	Libellulidae			Perithemis sp.	1
						Plathemis sp.	1
						Sub-Total	: 16
						Grand Total	: 16

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12991

Client Sample ID

: BP-3-3-"BORROW PIT LAKE-3"


Remarks

Date/Time Sample Collected : 10/6/99 @ 4:30:00 P

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	3
			Tubificidae			Branchiura sowerbyi	5
					Limnodrilus hoffmeisteri	36	
Arthropoda Insecta	Insecta	Diptera	Ceratopogonidae			Bezzia sp.	
						Ceratopogon sp.	<u> </u>
			Chaoboridae			Chaoborus punctipennis	1
			Chironomidae	Chironominae	Chironomini	Cryptochironomus fulvus	1
				Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
		Odonata	Libellulidae			Perithemis sp.	1
						Sub-Total:	51
					 	Grand Total:	51

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

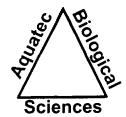
Laboratory Sample ID : 12979

Remarks

Client Sample ID

: PDC-1-1-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected


: 10/8/99 @ 9:30:00 A

Percent Sample Examined

: 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	2
			Tubificidae			Ilyodrilus templetoni	2
						Limnodrilus hoffmeisteri	71
						Psammoryctides californianus	2
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	1
			Chaoboridae			Chaoborus punctipennis	1
						Sub-Total:	79
						Grand Total:	79

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

BTR No.

Date

: 12/23/99

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12980

Client Sample ID

Remarks

: PDC-1-2-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected

: 10/8/99 @ 9:30:00 A : 100

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Varie	ety (# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus hoffmeisteri		4
Arthropoda	Insecta	Diptera	Ceratopogonidae			Bezzia sp.		1
						Ceratopogon sp.		1
						Sub-	Total:	F
						Grand 1	Total:	

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12981

Remarks

Client Sample ID

: PDC-1-3-"PRARIE DUPONT CREEK-1"

Date/Time Sample Collected


: 10/8/99 @ 9:30:00 A

Percent Sample Examined

: 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus hoffmeisteri	4
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	2
			Chironomidae	Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
		_				Sub-Total:	7
						Grand Total:	7

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

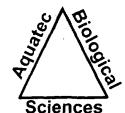
Reference: SAUGET,IL

Laboratory Sample ID : 12982

Client Sample ID

Remarks

: PDC-2-1-"PRARIE DUPONT CREEK-2"


Date/Time Sample Collected

: 10/8/99 @ 11:20:00

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/V	ariety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus hoffmeisteri		3
Mollusca	Pelecypoda	Prionodesmacea	Unionidae			Lampsilis sp.		1
						Su	ıb-Total:	4
				-		Gran	nd Total:	4

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

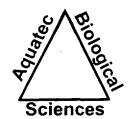
Laboratory Sample ID : 12983

Client Sample ID

: PDC-2-2-"PRARIE DUPONT CREEK-2"

Remarks

: 10/8/99 @ 11:20:00


Percent Sample Examined

Date/Time Sample Collected

: 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	1
			Tubificidae			llyodrilus templetoni	3
						Limnodrilus hoffmeisten	30
						Psammoryctides californianus	1
Arthropoda	Crustacea	Decapoda	Palaemonidae			Palaemonetes kadiakensis	1
						Sub-Total:	36
						Grand Total:	36

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

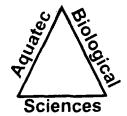
Reference: SAUGET,IL

Laboratory Sample ID : 12984

Client Sample ID

: PDC-2-3-"PRARIE DUPONT CREEK-2"

Remarks


Date/Time Sample Collected

: 10/8/99 @ 11:20:00

Percent Sample Examined

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	1
			Tubificidae			Limnodrilus hoffmeisteri	49
Arthropoda	Insecta	Diptera	Chaoboridae			Chaoborus punctipennis	2
			Chironomidae	Chironominae	Chironomini	Chironomus decorus	•
				Tanypodinae	Procladiini	Procladius sp.	\
						Sub-Tota	<i>l</i> : 54
						Grand Tota	l: 54

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12973

Client Sample ID

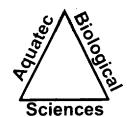
: REF2-1-1-"REFERENCE LOCATION 2-1"

Remarks

Date/Time Sample Collected

: 10/8/99 @ 2:30;00 P

Percent Sample Examined


Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Varlety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Nais variabilis	1
			Tubificidae			Limnodrilus hoffmeisteri	149
						Limnodrilus udekemianus	1
usca	Gastropoda	Basommatophora	Physidae			Physella heterostropha	2
Arthropoda	Crustacea	Decapoda	Palaemonidae			Palaemonetes kadiakensis	2
	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	1
			Chironomidae	Tanypodinae	Tanypodini	Tanypus neopunctipennis	2
			Ephydridae			Ephydra subopaca	6
						Sub-Total:	164
						Grand Total:	164

ABS

Page 28 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

No. of Samples: 69

: 99033

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12974

Client Sample ID

Remarks

: REF2-1-2-"REFERENCE LOCATION 2-1"

Date/Time Sample Collected : 10/8/99 @ 2:30:00 P

Percent Sample Examined

: 10

Sampling Depth (m)

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Varlety	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Aulodrilus pluriseta	1
						Limnodrilus hoffmeisteri	115
						Psammoryctides californianus	1
Mollusca	Gastropoda	Basommatophora	Physidae			Physella heterostropha	
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	2
						Culicoides sp.	1
						Sphaeromias sp.	1
			Chironomidae	Tanypodinae	Tanypodini	Tanypus neopunctipennis	2
		Hemiptera	Corixidae			Sigara sp.	1
				Corixinae		Trichocorixa sp.	2
						Sub-Total:	129
	-	· · · · · · · · · · · · · · · · · · ·				Grand Total:	129

ABS

Page 29 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12975

Client Sample ID Remarks

: REF2-1-3-"REFERENCE LOCATION 2-1"

Percent Sample Examined

: 10/8/99 @ 2:30:00 P : 10

Sampling Depth (m)

Date/Time Sample Collected

: Not Reported

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counte
Annelida	Oligochaeta	Tubificida	Naididae			Dero digit ata	1
			Tubificidae			Aulodrilus pluriseta	2
						Limnodrilus hoffmeisteri	50
poda	Insecta	Diptera	Ceratopogonidae			Bezzia sp.	1
						Ceratopogon sp.	5
						Culicoides sp.	60
						Sphaeromias sp.	1
			Chironomidae	Tanypodinae	Tanypodini	Tanypus neopunctipennis	28
		Hemiptera	Corixidae	Corixinae		Trichocorixa sp.	1
						Sub-Tota	: 149
						Grand Total	: 149

ABS

Page 30 of 74

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

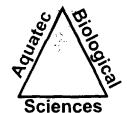
No. of Samples: 69

Date Received: 10/26/99

Reference: SAUGET,IL

Laboratory Sample ID : 12976

Client Sample ID Remarks


: REF2-2-1-"REFERENCE LOCATION 2-2"

Percent Sample Examined

Date/Time Sample Collected : 10/9/99 @ 10:30:00 : 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	# Counted
Annelida	Oligochaeta	Tubificida	Naididae			Dero digitata	1
			Tubificidae			Aulodrilus pigueti	1
						Limnodrilus hoffmeisten	22
Arthropoda	Insecta	Diptera	Ceratopogonidae			Ceratopogon sp.	F
						Sphaeromias sp.	\sim
			Chironomidae	Chironominae	Tanytarsini	Tanytarsus sp.	1
				Orthocladiinae	Orthocladiini	Psectrocladius sp.	1
				Tanypodinae	Tanypodini	Tanypus neopunctipennis	1
			Tipulidae			Ormosia sp.	1
						Sub-Total:	37
					<u> </u>	Grand Total:	37

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received: 10/26/99

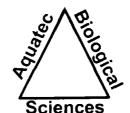
Reference: SAUGET,IL

Laboratory Sample ID : 12977

Client Sample ID

Remarks

: REF-2-2-"REFERENCE LOCATION 2-2"


Date/Time Sample Collected : 10/9/99 @ 10:30:00

Percent Sample Examined

: 100

Sampling Depth (m)

Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Variety	Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus hoffmeisteri	13
Arthropoda	Insecta	Diptera	Chironomidae	Tanypodinae	Pentaneurini	Ablabesmyia annulata	1
						Sub-Total:	14
						Grand Total:	14

Charlie Menzie

Menzie-Cura & Associates

1 Courthouse Lane

Chelmsford, MA 01824

Date

: 12/23/99

BTR No.

: 03703

Project No.

: 99033

No. of Samples: 69

Date Received : 10/26/99

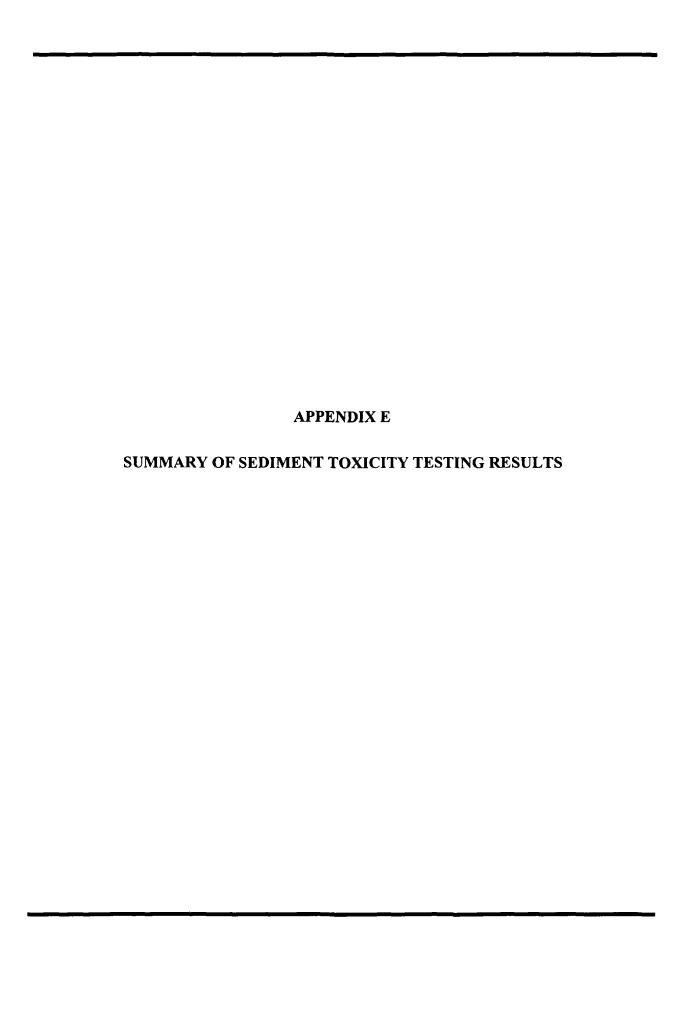
Reference: SAUGET,IL

Laboratory Sample ID : 12978

Client Sample ID

Remarks

: REF-2-3-"REFERENCE LOCATION 2-2"


Date/Time Sample Collected : 10/9/99 @ 10:30:00

Percent Sample Examined

: 100

Sampling Depth (m)


Phylum	Class	Order	Family	Sub-Family	Tribe	Genus/Species/Var	lety C	# Counted
Annelida	Oligochaeta	Tubificida	Tubificidae			Limnodrilus hoffmeisteri		25
Arthropoda	Insecta	Diptera	Chironomidae	Chironominae	Chironomini	Chironomus salinarius		8
						Polypedilum scalaenum		1
				Tanypodinae	Tanypodini	Tanypus neopunctipennis		
		Hemiptera	Corixidae	Corixinae		Trichocorixa sp.		~
						Sub-	·Total:	36
						Grand	Total:	36

Results of Hyalella azteca Survival and Growth Sediment Toxicity Tests Conducted on Sediment Samples from Dead Creek / Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for: Menzie-Cura & Associates 1 Courthouse Lane, Suite 2 Chelmsford, MA 01824

December 1999

EXECUTIVE SUMMARY

100.1HASG Amphipod, Hyalella azteca 10 Day Survival and Growth Test Conducted October 7 - October 31, 1999 for Menzie-Cura & Associates Dead Creek Site

Laboratory Sample ID	Client Sample ID	Mean Survival (%)	Mean Dry Weight (mg)
12546	BTOX-C-1	90	0.080*
12547	BTOX-C-2	71	0.064*
12548	BTOX-C-3	68*	
12549	BTOX-D-1	90	0.172
12550	BTOX-D-2	88	0.134*
12551	BTOX-D-3	90	0.168
12552	Laboratory Control Sediment	86	0.223
12589	BTOX-B-1	16*	
12590	BTOX-B-1 (DUPE)	19*	
12591	BTOX-B-2	1*	
12592	BTOX-B-3	64*	••
12593	BTOX-M	10*	
12609	E-1 Dead Creek	23*	
12610	E-2 Dead Creek	76	0.664
12611	E-3 Dead Creek	85	0.141*
12612	BP-1 Borrow Pit	89	0.156*
12613	BP-1 Borrow Pit (DUPE)	94	0.154*
12614	BP-3 Borrow Pit	91	0.154*
12622	Laboratory Control Sediment	86	0.202
12638	BP-2 Borrow Pit	96	0.172
12639	F-1 Dead Creek Section F	91	0.221
12640	F-2 Dead Creek Section F	86	0.219
12641	F-3 Dead Creek Section F	83	0.183
12664	Prairie DuPont Creek	98	0.254
12665	Prairie DuPont Creek 2	98	0.404
12666	Reference Creek	98	0.393
12668	Laboratory Control Sediment	98	0.268
12671	Ref 2-2 Reference Borrow Pit	98	0.335

^{*} The response data were statistically significantly different from the corresponding laboratory control sediment (p < 0.05)

⁻⁻ When a significant reduction in survival was detected, mean dry weight data were only reported in Appendix A (See Results).

Hyalella azteca Chronic Survival, Growth and Reproduction Toxicity Tests Conducted on Sediment Samples from the Solutia Site, Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for:
Menzie-Cura & Associates
1 Courthouse Lane, Suite 2
Chelmsford, MA 01824

Prepared by:

Aquatec Biological Sciences
75 Green Mountain Drive
South Burlington, Vermont

EXECUTIVE SUMMARY

100.1HA Amphipod, *Hyalella azteca*, 42-day Chronic Survival, Growth, and Reproduction Test Conducted October 19 - December 3, 1999 for Menzie-Cura & Associates Solutia Site, Sauget Illinois

Lab Test ID	Sample ID	Day 28 Mean Survival (%)	Day 28 Mean Dry Weight (mg)	Day 35 Mean Survival (%)	Day 42 Mean Survival (%)	Day 42 Mean Dry Weight (mg)	Day 42 Mean Number of Neonates/ Female
12546	BTOX-C-1	93	0.766	92	87	0.510	11.5
12547	BTOX-C-2	88	0.456	76	73	0.489	3.7
12548	BTOX-C-3	90	0.656	80	76	0.402	3.3
12549	BTOX-D-1	89	0.571	85	84	0.414	5.1
12550	BTOX-D-2	87	0.684	85	81	0.428	4.0
12551	BTOX-D-3	80	0.731	79	79	0.400	3.5
12552	Laboratory Control	55	0.982	51	46	0.231	0.6
12589	BTOX-B-1	23*		8*	8*		
12590	BTOX-B-1 (Dup)	22*		26*	26*		
12591	BTOX-B-2	Acute	Toxicity				
12592	BTOX-B-3	49*		40*	39*		
12593	BTOX-B-M	88	0.481	89	85	0.348	1.6
12609	E-1 Dead Creek	72*		63*	56*		
12610	E-2 Dead Creek	97	0.612	94	91	0.462	4.6
12611	E-3 Dead Creek	67*		53	50*		
12612	BP-1 Borrow Pit	93	0.594	88	83	0.380	4.1
12613	BP-1 (Dup) Borrow Pit	89	0.636	80	75	0.423	4.2
12614	BP-3 Borrow Pit	95	0.470	86	84	0.322	5.3
12615	Laboratory Control	62	0.296	36	33	0.299	1.8
12622	Laboratory Control	55	0.501	38	35	0.377	4.0
12638	BP-2 Borrow Pit	82	0.563	74	73	0.390	4.3
12639	F1 Dead Creek	91	0.639	89	84	0.397	4.8
12640	F2 Dead Creek	90	0.554	74	70	0.447	3.8
12641	F3 Dead Creek	89	0.661	85	76	0.406	4.8
12664	Prairie DuPont	90	0.443	83	79	0.346	2.6
12665	Praire Dupont 2	89	0.648	85	80	0.498	6.2
12666	Reference Creek	70*	. 	64	65	0.459	2.3
12668	Laboratory Control	73	0.477	65	59	0.293	2.2
12671	Ref 2-2 Ref Borrow Pit	87	0.458	85	83	0.351	3.4

^{*} A statistically significant reduction in the response was observed (relative to a corresponding Reference Site response, P<0.05).

⁻⁻ When a significant reduction in survival on Days 28 or 42 was detected, mean dry weight and reproduction data were only reported in Appendix A (See Results).

Results of Chironomus tentans Survival and Growth Sediment Toxicity Tests Conducted on Sediment Samples from Dead Creek / Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for:
Menzie-Cura & Associates
1 Courthouse Lane, Suite 2
Chelmsford, MA 01824

Prepared by: **Aquatec Biological Sciences**75 Green Mountain Drive
South Burlington, Vermont

EXECUTIVE SUMMARY

100.2CT Midge, *Chironomus tentans* 10-day Survival and Growth Test Conducted October 7 - October 20, 1999

for Menzie-Cura & Associates Dead Creek Site

Laboratory Sample ID	Client Sample ID	Mean Survival (%)	Mean Dry Weight (mg)
12546	BTOX-C-1	30 *	
12547	BTOX-C-2	0 *	
12548	BTOX-C-3	96	2.352
12549	BTOX-D-1	44 *	
12550	BTOX-D-2	48 *	,
12551	BTOX-D-3	71 *	
12552	Laboratory Control Sediment	98	2.558
12589	BTOX-B-1	0 *	
12590	BTOX-B-1 (DUPE)	4 *	
12591	BTOX-B-2	0 *	
12592	BTOX-B-3	100 ¹	0.581 ¹
12593	BTOX-M	96 *	
12609	E-1 Dead Creek	91*	
12610	E-2 Dead Creek	16 *	
12615	Laboratory Control Sediment	100	1.922
12611	E-3 Dead Creek	97	2.240
12612	BP-1 Borrow Pit	64 *	
12613	BP-1 Borrow Pit (DUPE)	40 *	
12614	BP-3 Borrow Pit	53 *	
12622	Laboratory Control Sediment	94	1.761
12638	BP-2 Borrow Pit	14 *	
12639	F-1 Dead Creek Section F	31 *	
12640	F-2 Dead Creek Section F	16 *	
12641	F-3 Dead Creek Section F	10 *	
12664	Prairie DuPont Creek	16 *	
12665	Prairie DuPont Creek 2	55 *	
12666	Reference Creek	13 *	
12668	Laboratory Control Sediment	100	2.065
12671	Ref 2-2 Reference Borrow Pit	11 *	

^{*} The response data were statistically significantly different from the corresponding laboratory control sediment $(p \le 0.05)$.

⁻⁻ When a statistically significant reduction in survival was detected, mean dry weight data were only reported in Appendix A (See Results).

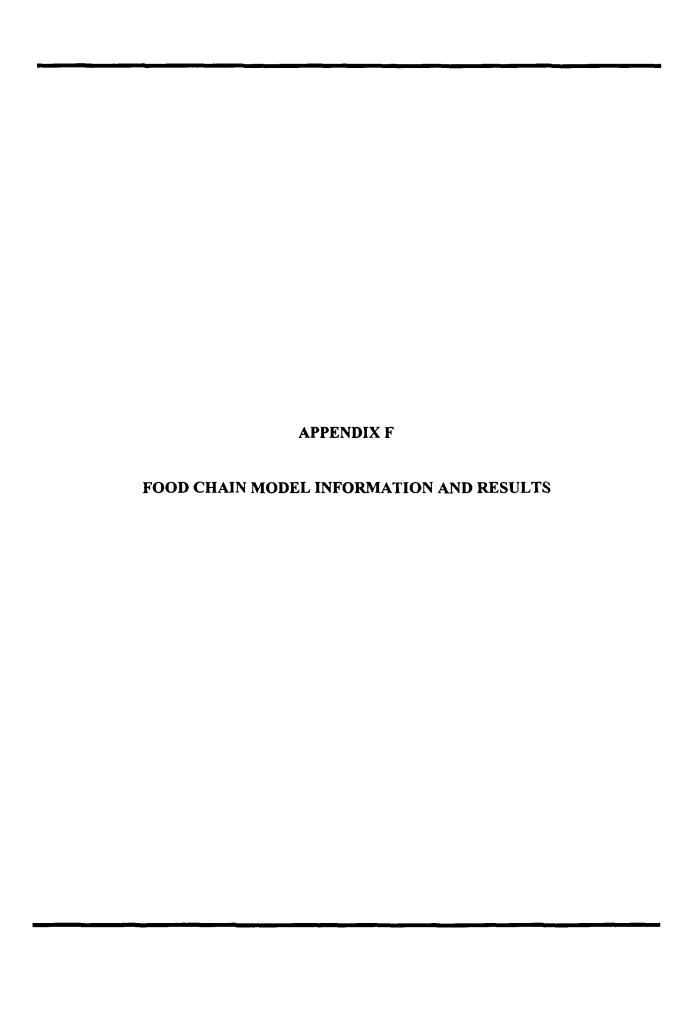
¹ Indigenous *Chironomus tentans* were present in this sample, resulting in counts higer than the initial number. Statistical analysis of test data for Sample 12592 was not performed.

Chironomus tentans Chronic Survival, Growth, Emergence and Reproduction Toxicity Tests Conducted on Sediment Samples from the Solutia Site, Sauget, Illinois

Reference BTRs 3615, 3622, 3629, 3633, 3641, 3643

Prepared for:
Menzie-Cura & Associates
1 Courthouse Lane, Suite 2
Chelmsford, MA 01824

Prepared by: **Aquatec Biological Sciences**75 Green Mountain Drive
South Burlington, Vermont


EXECUTIVE SUMMARY

100.5CT Midge, Chironomus tentans Chronic Survival, Growth, Emergence, and Reproduction Conducted October 19 - December 14, 1999 for Menzie-Cura & Associates Solutia Site, Sauget, Illinois

Laboratory Sample ID	Client Sample ID	Day 20 Mean Survival (%)	Day 20 Mean Ash Weight (mg)	Emergence Proportion (%)	Mean Eggs Hatched/ Female	Mean Days Survived, Female	Mean Days Survived, Male	
12546	BTOX-C-1	Acute	Toxicity					
12547	BTOX-C-2	Acute	Toxicity					
12548	BTOX-C-3	63	3.186	56	526	2.4	3.7	
12549	BTOX-D-1	Acute	Toxicity					
12550	BTOX-D-2	31	0.937*	2*	0*	0.8*	0*	
12551	BTOX-D-3	42*		10*	298	0.6*	1.1*	
12552	Laboratory Control	81	2.679	50	130	2.8	4.5	
12589	BTOX-B-1	Acute	Toxicity					
12590	BTOX-B-1 (DUPE)	Acute	Toxicity					
12591	BTOX-B-2	Acute	Toxicity					
12592	BTOX-B-3	52	2.244	52	302	2.5	3.1	
12593	BTOX-M	40	2.216	54	430	3.6	4.1	
12609	E-1 Dead Creek	54	2.501	42	576	3.5	2.4	
12610	E-2 Dead Creek	Acute	Toxicity					
12611	E-3 Dead Creek	0*		1*	0*	0.6*	0*	
12612	BP-1 Borrow Pit	0*		5*	0*	0*	0.7*	
12613	BP-1 Borrow Pit (DUPE)	0*	~~	8*	127*	0.3*	0.8*	
12614	BP-3 Borrow Pit	6*		14*	106*	0.8*	1.2*	
12622	Laboratory Control	46	2.959	45	554	3.1	4.9	
12638	BP-2 Borrow Pit	Acute	Toxicity					
12639	F-1 Dead Creek Section F	Acute	Toxicity					
12640	F-2 Dead Creek Section F	Acute	Toxicity					
12641	F-3 Dead Creek Section F	Acute	Toxicity					
12664	Prairie DuPont Creek	Acute	Toxicity					
12665	Prairie DuPont Creek 2	69	3.074	13*	249	1.1*	1.4*	
12666	Reference Creek	Acute	Toxicity					
12668	Laboratory Control	65	2.923	69	354	3.6	4.3	
12671	Ref 2-2 Ref. Borrow Pit		Toxicity					

The response data were statistically significantly different from the corresponding laboratory control sediment $(p \le 0.05)$.

⁻⁻ When a statistically significant reduction in survival was detected, mean ash-free dry weight data were only reported in Appendix A.

Appendix F Food Chain Model Overview

The following food chain models and assumptions are used to estimate exposure of wildlife species to Chemicals of Potential Concern (COPCs) via the food chain. The models apply to select species that may use the aquatic environments of Dead Creek and the Borrow Pit Lake of Sauget Area I. The selected species have also been chosen to represent different feeding guilds. The wildlife species for which food chain models were applied are described in Table F-1. This appendix describes the food chain models used in this assessment, presents the exposure parameters, and toxicity reference values for wildlife (Tables F-2 and F-3). The last section of this appendix is the results of the food chain modeling.

Table F-1. Wildlife species used to assess ecological risks

Species	Feeding Guild	Primary Habitat	Use in ERA
Great Blue Heron	Eats fish and other small animals	Aquatic	Evaluate exposure to COPCs in aquatic food webs
Mallard Duck	Eats plants and invertebrates	Aquatic	Evaluate exposure to COPCs in aquatic plants and invertebrates
Bald Eagle	Eats fish and other smaller birds and mammals	Aquatic	Evaluate exposure to COPCs in aquatic food webs
Muskrat	Eats plants and some invertebrates (e.g., clams)	Aquatic	Evaluate exposure to COPCs in aquatic plants and in invertebrates
River Otter	Eats fish, other small animals and some invertebrates	Aquatic	Evaluate exposures to COPCs in fish and invertebrates

Model Structure

The general form of the wildlife exposure model is:

 $\begin{aligned} & \text{Exposure Dose (oral)} = \{ & [\text{Conc}_{food} * \text{Ingest}_{food}] + [\text{RAF * Conc}_{soil} * \text{Sediment}_{diet} * \text{Ingest}_{food}] + \\ & [\text{Conc}_{water} * \text{Ingest}_{water}] \} * & f_{migration} & x * f_{foraging area} \end{aligned}$

Where:

Exposure Dose (oral) = dose of a COPC in ug/g-day

Conc_{food} = concentration of the COPC (ug/g) in the food (measured or estimated); this is the average and maximum concentration in the relevant exposure zone, an area determined by the size and locations of foraging areas. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas. We will also use the maximum concentration and calculate risk from this exposure separately. We will not use the 95% upper confidence limit (UCL) on the mean because of the low number of samples collected from each exposure area and medium.

Ingest_{food} = amount of food ingested per day normalized to body weight (g/g-day) and usually expressed in terms of wet weight of food/live body weight.

RAF – relative availability factor for COPCs in sediment via incidental ingestion of sediment.

Conc_{sediment} = concentration ug/g in the relevant exposure zone; this is estimated as an average concentration in the exposure zone for chronic exposure and effects, and a maximum for evaluation of short-term or acute exposures. The average is the appropriate statistic because ecological receptors integrate exposure over their foraging areas.

Sediment_{diet} = fraction of sediment in the diet; the product of this number and Ingest_{food} yields an estimate of the amount of sediment that is incidentally ingested during foraging, grooming, etc.

Conc_{water} = concentration mg/L in the relevant exposure zone; the exposure concentration is the average surface water concentration;

Ingest_{water} = drinking water ingestion rate in L/kg/day; the ingest_{water} x conc_{water} yields an estimate of the amount of water that is ingested as drinking water. The drinking water component is in addition to other water sources. USEPA (1993) states that "under some conditions, some species can meet their water requirements with only the water contained in the diet and metabolic water production".

 $F_{\text{migration}}$ = the number of months the time the species spends in the area over 12 months; for a species that doesn't migrate, this value is 1.

 F_{foraging} area = the ratio of the area of the site to the species foraging area. If this value is greater than 1, it can be assumed to be equal to 1 or, if sufficient data are available, the site can be subdivided into smaller foraging areas.

Incidental Sediment Ingestion Rate Estimation

The wildlife sediment ingestion values applied in the food chain models are from Beyer et al. (1994) and are a percentage of the dry mass of food ingested per day.

For the receptors at Dead Creek and the Borrow Pit Lake (except the mallard), the food ingestion rate is given as grams of wet food/gram of body weight/day, and these food ingestion rates are applied in the model.

To estimate a soil ingestion rate, we assumed a moisture content of fish and clams of about 80% (percent solids of 20%) and a moisture content of plants of about 70% (percent solids of 30%). These values are used to convert the receptor's food ingestion rate from wet weight to dry weight, and then calculate a soil ingestion rate from the proportion estimated by Beyer et al (1994). For example, a river otter that eats a diet of 100% fish at a rate of 0.1 g wet food/g body weight/day, will have a dry food consumption rate of:

0.1 g wet food/g body weight/day x 0.2 g dry food/g wet food = 0.02 g dry food/g body weight/day

If the otter ingests 2% of the dry mass of its diet as sediment, the resulting sediment ingestion weight is:

0.02 g dry food/g body weight/day x 0.02 g sediment/g dry food ingested = 0.0004 g dry sediment/g body weight/day

This can be used directly with the dry weight concentration of sediment to calculate an exposure dose.

[Note: the mallard's food ingestion rate is given on a dry weight basis, so we only need to take 2% or 10% of that value to estimate their sediment ingestion rate. The mallard's food ingestion rate has to be converted to wet weight for shrimp or plant ingestion.]

Model Application

The model will be applied in several ways:

- 1. Potential maximum exposure: The potential for maximum exposure is considered without incorporating information on foraging area or migration.
- 2. Chronic exposure of individuals: The potential for chronic exposure to individuals is considered by calculating an average concentration for food and sediments at spatial scales defined by the foraging areas of the species. For example, exposure concentrations for a species with a foraging area of 10 ha would be determined by averaging the food and

sediments concentrations within this spatial scale. A species with a foraging area of 0.1 ha would have an averaging area that is 100 times less. As a simplifying assumption, the health of an individual is assumed to be reflective of the health of a subpopulation. Comparisons to criteria and guidelines and the additional components of the weight-of-evidence approach also provide insights into population health.

3. Chronic exposures of the bald eagle. Because the bald eagle is rare and the risk to the individual is considered, the wildlife exposure model will also be used to estimate exposures to the individual.

Model Parameters for Wildlife Species

Great Blue Heron Model

Food Habits: 100% of various fish species. This is a simplifying assumption because herons eat other animals as well. In marsh environments, the great blue heron is an opportunistic feeder; they prefer fish, but they will also eat amphibians, reptiles, crustaceans, insects, birds, and mammals. The diet varies but may include up to 100% fish. A Nova Scotia study found 6% forage fish (Atlantic silverside and mummichog), 52.6% eels, and 41.4% other fish in the diet of great blue heron (USEPA, 1993). However, fish are their main diet. Based on information presented in USEPA (1993), we assume that the great blue heron's diet consists of 27% larger fish such as brown bullhead and largemouth bass and 73 % small minnows.

Food Ingestion Rate: 0.18 g/g-day. This is the estimate of food consumption calculated using Kushlan's equation for wading birds as reported in USEPA (1993).

Incidental sediment ingestion: Because blue herons feed primarily on fish, estimated sediment consumption is presumed to be negligible.

Water Ingestion Rate: 0.045 L/kg/day. This water ingestion rate was estimated using the allometric relationship developed by Calder and Braun (1983) in USEPA (1993) with a body weight from Quinney (1982).

Foraging Area: Great blue heron tend to forage near nesting sites (USEPA, 1993). No wading bird colonies were located within the study area. However, the Illinois Natural Heritage Inventory has documented two 1000-2000 nest mixed-species colonies in East St. Louis. The closer of these two colonies is approximately one mile east of Sauget Area I near the Alton & Southern rail yards in Alorton. The second site is over two miles to the north at Audubon Avenue and 26th Street. These two colonies contain the only breeding little blue heron and snowy egret in Illinois. In addition, black-crowned night heron, great egret, cattle egret, great blue heron, and green-backed heron nest in the colonies.

A study in Minnesota measured the distance between nesting and foraging grounds to range from 0 to 2.7 miles. A Carolina study found the same distance to be 4 to 5 miles. The maximum

distance great blue heron will fly between foraging areas is 9 to 13 miles (USEPA, 1993). The size of the feeding territory in a freshwater area in Oregon was 0.6 to 8.4 hectares (USEPA, 1993). It appears that the feeding territories of great blue heron are variable. Some colonies may feed in one particular area while others will feed anywhere prey is available within a radius of at least several miles. This assessment uses the reported 0.6 to 8.4 hectares feeding area. As a sensitivity analysis, it also uses a feeding area with a radius of 3 miles (7,300 hectares).

Migration history: Great blue herons arrive in Illinois near St. Louis in mid-February and stay through October (INHS, 2000).

Mallard Duck Model

Food Habits: The mallard feeds (usually in shallow water) by "tipping up" and eating food off the bottom of the water body. Primarily, it consumes aquatic plants and seeds (for instance, primrose willow and bulrush seeds), but it will also eat aquatic insects, other aquatic invertebrates, snails and other molluscs, tadpoles, fishes, and fish eggs. Ducklings and breeding females consume mostly aquatic invertebrates. We assess a diet of plant in Dead Creek Section F and a diet of shrimp in the Borrow Pit Lake. We assume that the clams that inhabit the Borrow Pit Lake are too large for a mallard to consume.

Food ingestion rate: 0.08 g/g-day. This ingestion rate is based on the dry weight of food. However, wet weight ingestion rates are applied in the food chain model. Assuming that the water content of plants is 70% (30% solids) and is 80% (20% solids) for invertebrate tissue, the equivalent wet weight ingestion rate for plant material is 0.3 g/g-day and 0.4 g/g-day for invertebrate tissue.

Incidental sediment ingestion: Beyer et al. (1994) estimated that the incidental ingestion of soil/sediment by mallard ducks is less than 2% of their diet. For the model, we assumed an incidental sediment ingestion rate of 2%.

Water Ingestion Rate: 0.0565 L/kg/day. The value is the average of male and female water ingestion rates estimated by USEPA (1993) using the allometric relationship for birds from Calder and Braun (1983). The body weights were selected by USEPA from Nelson and Martin (1953).

Foraging Area: The foraging area for the mallard varies depending on the type and distribution of water habitat and population density (Bellrose, 1976; Dwyer et al., 1979; Kirby et al., 1985 In USEPA 1993). The mallard's home range is variable, but an approximate range is 580 hectares. It prefers to nest on ground sheltered by dense grass-like vegetation, near the water.

Migration information: In this region of Illinois, some mallards are present year round while other mallards that breed farther to the north overwinter in the area (USEPA, 1993). This assessment assumes that mallards do not migrate from the area.

Bald Eagle Model

Bald eagles, although primarily carrion feeders, are opportunistic and will eat whatever is plentiful including fish, birds, and mammals. Reported food ingestion rates range from 0.064 to 0.14 g/g/day. A study of adult breeding bald eagles in Connecticut estimated a food ingestion rate of 0.12 g/g/day (USEPA, 1993). A study of bald eagle diets in Maine indicated that their diets consisted of 76.7% fish, 16.5% birds, and 6.8% mammals (USEPA, 1993). In this assessment we have assumed a food ingestion rate of 0.12 g/g/day.

Incidental sediment ingestion: We assume that a bald eagle does not incidentally ingest sediment while feeding.

Water ingestion rate: USEPA (1993) reports a water ingestion rate of 0.037 l/kg/day.

Foraging area: Foraging areas vary according to season and location. The USEPA (1993) reports a foraging length of 2 to 4.5 miles along a river. A foraging area of 1,880 hectares has been reported for a Missouri lake in winter (USEPA, 1993).

Migration information: Bald eagles overwinter in the Mississippi River valley from October through March.

Muskrat Model

Food Habits: The muskrat feeds largely on aquatic plants, but depending on location and time of year may also consume aquatic invertebrates (crayfish, crabs, etc.), small amphibians, turtles, fish, mollusks, and even young birds. The muskrat lives quite close to the water, either on the bank of the water body or constructing a lodge in the water body. Plant matter composes from 95 to 100% of their food intake, with the preferred plants being cattail and rush. Animals in the diet can include crayfish, fish, frogs, turtles, and young birds (USEPA, 1993). For the model, we assumed a diet that is comprised of plant matter Dead Creek Section F and clams in the Borrow Pit Lake.

Food Ingestion Rate: Muskrats are reported to eat greens in the amount of 0.34 g/g-d and a mixed diet of greens and corn in an amount of 0.26 g/g-d (Svihla and Svihla, 1931). We used 0.34 g/g-day wet weight.

Incidental sediment ingestion: We assumed an incidental sediment ingestion rate of 2% of the diet for this species. This is based on reported values for other herbivorous rodents including the woodchuck (less than 2%), meadow vole (2.4%), white-footed mouse (less than 2%), and white-footed prairie dog (2.7%) (Beyer et al., 1994). The large herbivorous mammals included in the Beyer et al. (1994) study also had incidental soil ingestion rates of less than 2%. Mammals with higher soil ingestion rates include the black-footed prairie dog (7.7%), nine-banded armadillo (17%), opossum (5.4%), and raccoon (9.4%). These species eat mixed diets and probably engage

in digging activities to obtain their food. The incidental sediment ingestion rate is 0.002 g/g-day dry weight assuming that soil ingestion is 2% of food ingestion based on a plant ingestion rate.

Water Ingestion Rate: 0.98 L/kg/day. USEPA (1993) applies the allometric relationship for mammals from Calder and Braun (1983). The body weights were selected by USEPA from Sather (1958).

Foraging Area: Muskrat have been reported to forage within 5 to 10 m from their den (Wilner et al., 1980). MacArthur (1978) reported that this species is found within 15m of their home 50% of the time. Its home range is small (0.17 hectares on average).

River Otter Model

Food Habits: The diet of the river otter consists primarily of aquatic animals, e.g. fish (93 – 100% of diet), although they may consume small numbers of crustaceans, aquatic insects, young mammals and turtles. A relative of the otter, the mink, has similar feeding habits but will eat more mammals (e.g., muskrat and meadow voles) and birds. Otters have also been observed to consume waterfowl in the northerly latitudes. (USEPA, 1993). For the model, the diet of river otter is assumed to consist of 100% fish.

Food Ingestion Rate: Food intake has been reported to range between 700 to 900g of food daily in captivity (Harris, 1968). The average body size of river otter is reported to range from about 8 to 9 kg for males and from about 7 to 8 kg for females. For the purpose of the model, we assumed an ingestion rate of 800 g/day (the middle of the range) and a body weight of 8 kg (again the middle of the range). This yields an ingestion rate of 0.1 g/g-day wet weight for the otter.

Incidental sediment ingestion: The river otter is expected to feed primarily on fish and incidental sediment ingestion is expected to be negligible. However, otters are known to eat clams and therefore some sediment ingestion may occur. Consistent with the expectation that incidental sediment ingestion rate is low, we used a sediment ingestion rate of 2% of the diet. This is the same value used for the muskrat. The incidental sediment ingestion rate is 0.0004 g/g-day dry weight assuming that soil ingestion is 2% of food ingestion based on a 100% fish diet.

Water Ingestion Rate: 0.08 L/kg/day. EPA (1993) applies the allometric relationship for mammals from Calder and Braun (1983). The body weights were selected by USEPA from Lauhachinda (1978).

Foraging Area: This varies by habitat type. On long shorelines, it can encompass kilometers, or it can measure in hectares in marshes or small stream areas. These areas generally contain smaller areas of concentrated activity (USEPA 1993). The otter dens in banks, in hollow logs, or similar burrow-like places. Home range varies depending on habitat and sex. A range of 400 to 1,900 hectares has been reported for Missouri marshes and streams (USEPA, 1993).

References

- Bellrose, F. C. (1976) Ducks, geese, and swans of North America. Harrisburg, PA: The Stackpole Co.; pp. 229-243.
- Bent, A.C., 1963. Life Histories of North American Marsh Birds, Dover Publications, Inc., New York.
- Beyer, W.N., E.E. Connor, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. J. Wildl. Manage. 58: 375-382.
- Bull, John and Farrand, John Jr. 1977. The Audubon Society Field Guide to North American Birds eastern region. New York: Alfred A. Knopf. 784pp.
- Calder, W. A.; Braun, E. J. (1983) Scaling of osmotic regulation in mammals and birds. Am. J. Physiol. 244: R601-R606.
- Chapman J.A. and G.A. Feldhamer (ed.) Wild Mammals of North America, Biology, Management, Economics. 1990. Baltimore: Johns Hopkins University Press.
- Chew, R. M. (1951) The water exchanges of some small mammals. Ecol. Monogr. 21: 215-225.
- Clench, M. H.; Leberman, R. C. (1978) Weights of 151 species of Pennsylvania birds analyzed by month, age, and sex. Bull. Carnegie Mus. Nat. Hist.
- Dwyer, T. J.; Krapu, G. L.; Janke, D. M. (1979) Use of prairie pothole habitat by breeding mallards. J. Wildl. Manage. 43: 526-531.
- Ernst, C. H. (1968) Kidney efficiencies of three Pennsylvania mice. Trans. Kentucky Acad. Sci. 29: 21-24.
- Hamilton, W. J., Jr. (1941) The foods of small forest mammals in eastern United States. J. Mammal. 22: 250-263.
- Harris, C. J. (1968) Otters: a study of the recent Lutrinae. London, U.K.: Weidenfield & Nicolson.
- Kirby, R. E.; Riechmann, J. H.; Cowardin, L. M. (1985) Home range and habitat use of forest-dwelling mallards in Minnesota. Wilson Bull. 97: 215-219.
- Lauhachinda, V. (1978) Life history of the river otter in Alabama with emphasis on food habitats [Ph.D. dissertation]. Auburn, AL: University of Alabama.

- MacArthur, R. A. (1978) Winter movements and home range of the muskrat. Can. Field-Nat. 92: 345-349.
- Nagy, Kenneth A., 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds". Ecological Monographs, 57(2), 1987, pp 111-128.
- Nelson, A. L.; Martin, A. C. (1953) Gamebird weights. J. Wildl. Manage. 17: 36-42.
- Ognev, S. I. (1950) Mammals of the U.S.S.R. and adjacent countries. Translated from Russian by; Israel Program for Scientific Translations (1964), Jerusalem; 626pp.
- Palmer, R.S., ed., 1962. Handbook of North American Birds, Volume 1, Loons through Flamingos, Yale University Press, New Haven.
- Quinney, T. E. (1982) Growth, diet, and mortality of nestling great blue herons. Wilson Bull. 94: 571-577.
- Sather, J. H. (1958) Biology of the Great Plains muskrat in Nebraska. Wildl. Monogr. 2. 35pp.
- Svihla, A.; Svihla, R. D. (1931) The Louisiana muskrat. J. Mammal. 12: 12 –28.
- US Environmental Protection Agency. (1993). Wildlife Exposure Factors Handbook Volume I. Washington D.C: Office of Research and Development; EPA Report no. EPA/600/R-93/187a.
- Willner, G. R.; Feldhamer, G. A.; Zucker, E. E.; et al. (1980) Ondatra zibethicus. Mammalian species. No. 141. Amer. Soc. Mammal.; 8pp.

TABLE F-2 Toxicological Endpoints for Birds Dead Creek Ecological Risk Assessment Sauget Area I

		CHRONIC													
Compound Herbicides	Chemical Form	Test Species	Exposure Route	Exposure Duration (Days unless noted)	Endpoint	NOAEL (mg/kg/d)	LOAEL (mg/kg/d)	Source							
2.4-D				ł l		NA NA	NA NA								
Dicamba	i		ł	!		l NA	NA I								
Dichloroprop			ļ			NA	NA L								
MCPA	}	}	}	1		NA NA	NA								
MCPP				[NA	NA								
Metals															
Aluminum, Total	Al ₂ (SO ₄) ₃	Ringed Dove	Incorporation into Food	116	Reproduction	109.7	NA	Sample et al., 1996							
Antimony, Total	ĺ	_	ľ	i i		NA	NA								
Arsenic, Total	Sodium Arsenite	Mallard Duck	Incorporation into Food	128	Mortality	5.14	12.84	Sample et al., 1996							
				4 weeks; subchronic to chronic factor of 0.1 applied to data by											
Barlum, Total	Barium Hydroxide	1 day old Chick	Incorporation into Food	authors	Mortality	20.8	41.7	Sample et al., 1996							
Cadmium, Total	Cadmium Chloride	Mallard Duck	Incorporation into Food	90	Reproduction	1.45	20	Sample et al., 1996							
Chromium, Total	Trivalent	Black Duck	Incorporation into Food	290	Reproduction	1	5	Sample et al., 1996							
Copper, Total	Copper Oxide	1 day old Chick	Incorporation into Food	70	Growth, Mortality	47.0	61.7	Sample et al., 1996							
iron	1		}			NA_	NA								
Lead, Total	Acetata	Japanese Quail	Incorporation into Food	84	Reproduction	1.13 ⁸	11.3	Sample et al., 1996							
Manganese	Mn ₃ O ₄	Japanese Quail	Incorporation into Food	75 21 days through	Growth, Behavior	977	NA.	Sample et al., 1996							
Molybdenum	Sodium Molybdate	Chicken	Incorporation into Food	reproduction	Reproduction Mortality, Growth,	3.5	35.3	Sample et al., 1996							
Nickel, Total	Nickel Sulfate	Mallard Duckling	Incorporation into Food	90	Behavlor	77.4 NA	107 NA	Sample et al., 1998							
Silver, Total	Zina Sulfata	M/hite Leeborn Her	Incomposition into Food	308	Reproduction	14.5	131	Sample of all 1006							
Zinc, Total	Zinc Sulfate Mercuric Chloride	White Leghorn Hen Japanese Quail	Incorporation into Food Incorporation into Food	365	Reproduction	0.45	0.9	Sample et al., 1996 Sample et al., 1996							
Mercury, Total	Methyl Mercury	Japanese Quaii	incorporation into rood	- 303	кергососион	1	0.9	Sample et al., 1990							
Methyl mercury	Dicyandiamide	Mallard Duck	Incorporation into Food	3 generations	Reproduction	0.0064	0.064	Sample et al., 1996							
PCBs	,														
Total PCB	Arodor 1254	Ring-necked Pheasant	Incorporation into Food	119	egg hatchability	0.18	1.8	Dahlgren et al., 1972							
Pesticides	NA NA	Brown Pelican	Language Into Food	- Europa	Reproduction	0.0028	0.028	Sample et al., 1996.							
Total DDT Aldrin	NA	Brown Pelican	Incorporation into Food	5 years	Reproduction	NA NA	NA NA	Sample et al., 1990.							
alpha-Chiordane	Chlordane	Red-winged Blackbird	Incorporation into Food	84	Mortality	2.14	10.7	Sample et al., 1996							
delta-BHC	BHC - mixed isomers	Japanese Quail	Incorporation into Food	90	Reproduction	0.56	2.25	Sample et al., 1996							
Dieldrin	Dieldrin	Barn Owl	Incorporation into Food	730 28 during critical life	Reproduction	0.077	NA	Sample et al., 1996							
Endosulfan i	Endosulfan	Gray Partridge	Incorporation into Food	stage = chronic 28 during critical life	Reproduction	10	NA	Sample et al., 1996							
Endosulfan (i	Endosulfan	Gray Partridge	Incorporation into Food	stage = chronic 28 during critical life	Reproduction	10	NA	Sample et al., 1996							
Endosulfan sulfate	Endosulfan	Gray Partridge	Incorporation Into Food	stage = chronic	Reproduction	10	NA	Sample et al., 1996							
Endrin aldehyde	Endrin	Screech Owl	Incorporation into Food	> 83	Reproduction	0.01	0.1	Sample et al., 1996							
Endrin ketone gamma-Chlordane	Endrin Chlordane	Screech Owl Red-winged Blackbird	Incorporation into Food Incorporation into Food	> 83 84	Reproduction Mortality	0.01 ^a 2.14	0.1 10.7	Sample et al., 1996 Sample et al., 1996							
gamma-BHC (Lindane)	NA NA	Mailard Duck	Oral intubation	56	Reproduction	2 *	20	Sample et al., 1996							
Heptachlor				!		NA.	NA								
Heptachlor epoxide						NA.	NA								
Methoxychlor	j	j	1	J		NA	l na l								

TABLE F-2 Toxicological Endpoints for Birds Dead Creek Ecological Risk Assessment Sauget Area I

			CHRONIC												
Compound	Chemical Form	Test Species	Exposure Route	Exposure Duration (Days unless noted)	Endpoint	NOAEL (mg/kg/d)	LOAEL (mg/kg/d)	Source							
Semivolatiles															
bis(2-Ethylhexyl)phthalate Di-n-butylphthalate Diethylphthalate	Bis(2-ethylhexyl)phthelate NA	Ringed Dove Ringed Dove	Incorporation into Food Incorporation into Food	28 during critical life stage = chronic 28	Reproduction Reproduction	1.1 0.11 a	NA 1.1 NA	Sample et al., 1996 Sample et al., 1996							
Total PAHs	Mix of PAHs	Mallard Duck	Oral	203	Increased Liver Weight Fertility, Embryo	40 *	_400	Eisler, 1987							
Dioxin TEQ	2.3.7.8-TCDD	Ring-necked Pheasant	Intraperitoneal	70	Mortalitiy	1.4E-05	0.00014	Nosek et al., 1992							

NA = Not Available

Sources:

Elsler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: A synoptic review. US Dept. of the Interior. US Fish and Wildlife Service. Patuxent Wildlife Research Center, MD Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Risk Assessment Program. Health Sciences Reasearch Division. Oak Ridge, TN. ES/ER/TM-86/R3. Dahlgren, R.B., R.L. Linder, and C.W. Carlson. 1972. Polychlorinated biphenyls: their effects on penned pheasants. Environ Health Perspectives 1:89-101.

Nosek, J.A., J.R. Sullivan, S.S. Hurley, S.R. Craven, and R.E. Peterson. 1992. Toxicity and reproductive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in ring-necked pheasant hens. Journal of Toxicology and Environmental Health. 35: 187-198.

TEF = Toxicity equivalency factor

NOAEL value was derived by applying a LOAEL to NOAEL Ratio of 10 to the LOAEL value.

TABLE F-3
Toxicological Endpoints for Mammals
Sauget Area I Ecological Risk Assessment

				gical Risk Assessment					
				CHRONIC					
				Test Species					
Compound	Exposure Route	Effect Endpoint	Exposure Duration	Chemical Form	Test Species	Body Weight ^a	NOAEL	LOAEL	Reference
Herbicides			(Days unless noted)	ļ		(kg)	(mg/kg/d)	(mg/kg/d)	
2-4,D	Oral-diet	Blood, kidney, and liver toxicity	90 days	2,4-D	Rat	0.35	1 1	5	IRIS, 2000
Dicamba	Oral-diet	Reproduction	13 days - gestation	Dicamba	Rabbit	1.2	0.3	1	IRIS, 2000
Dichloroprop		,	to days gooding.		1		NA NA	NA	1113, 2000
MCPA	Oral - diet	Reproduction	2 generations	MCPA	Rat	0.35	7.5	22.5	IRIS, 2000
MCPP	Oral-diet	Renal effects	90 days	MCPP	Rat	0.35	3	9	IRIS, 2000
Metals			00 00/5			0.00			11(13, 2000
Aluminum, Total	Oral-water	Reproduction	3 generations	Aluminum Chloride	Mouse	0.03	1.93 b	19.3	Sample et al., 1996
Antimony, Total	Oral-water	Longevity	lifetime (>1yr)	Antimony Potassium Tartrate	Mouse				1
Antimony, Total	Oral-diet	Growth	730	Arsenite	Rat	0.03 0.35	0.125 b	1.25	Sample et al., 1996
Barium, Total	Oral-gavage	Mortality	10	Barium Chloride	Rat	0.35	2.5	NA 10.0	Byron et al. 1967
Cadmium, Total	Oral-gavage	Reproduction	42	Cadmium Chloride	Rat	0.303	13.8 c	19.8 c	
Chromium, Total	Oral-diet	Reprod/Longevity	730	Trivalent Chromium	Rat	0.305	2737	NA	Sample et al., 1996
Copper, Total	Oral-diet	Reproduction	357	Copper Sulfate	Mink	1	11.7	15.14	Sample et al., 1996 Sample et al., 1996
iron	Oral Glot	/ top/oddotton	NA NA	Copper Sunate	WILLIA -	•	NA NA	NA	Sample et al., 1990
Lead, Total	Oral-diet	Reproduction	3 generations	Lead Acetate	Rat	0.35	8	80	Sample et al., 1996
Manganese	Oral-diet	Reproduction	224 days	Manganese Oxide	Rat	0.35	88	284	Sample et al., 1996
Molybdenum	Oral - water	Reproduction	3 generations		Mouse	0.03	0.26 b	2.6	Sample et al., 1996
•		· · · · · ·	_	Molybdate Nickel Suitate					
Nickel, Total	Oral-diet	Reproduction	3 generations	Hexahydrate	Rat	0.35	40	80	Sample et al., 1996
Silver, Total	Oral-water	Body Weight	259	NA	Rat	0.35	22 b	222.2	ATSDR, 2000
Zinc, Total	Oral-diet	Reproduction	16 days of gestation	Zinc Oxide	Rat	0.35	160	320	Sample et al., 1996
Mercury, Total	Oral-diet	Reproduction	168	Mercuric Chloride Methyl Mercury	Mink	. 1	1 1	_NA	Sample et al., 1996
Methyl mercury	Oral-diet	Reproduction	3 generations	Chloride	Rat	0.35	0.032	0.16	Sample et al., 1996
PCBs									
Aroclor-1254	Oral-diet	Reproduction	5-9 mo	Arochlor 1254	Mink	1_	0.14	0.28	Aulerich and Ringer, 1977
Pesticides									
Total DDT	Oral-diet	Reproduction	730	DDT	Rat	0.35	0.8	4	Sample et al., 1996
Aldrin	Oral - diet	Reproduction	3 generations	NA NA	Rat	0.35	0.2	1	Sample et al., 1996
a-Chlordane	Oral-diet	Reproduction	6 generations	Chlordane	Mouse	0.03	4.6	9.2	Sample et al., 1996
delta-BHC	Oral-diet	Reproduction	331 days	BHC mixed isomers		1	0.014 ь	0.14	Sample et al., 1996
Dieldrin	Oral-diet	Reproduction	3 generations	NA S-decelled	Rat	0.35	0.02 b	0.2	Sample et al., 1996
Endosulfan I	Oral intubation	Reproduction/blood chemistry	30 days	Endosulfan	Rat Rat	0.35 0.35	0.15 c 0.15 c	NA NA	Sample et al., 1996
Endosulfan II	Oral intubation	Reproduction/blood chemistry	30 days	Endosulfan	Rat	0.35	0.15 c	NA NA	Sample et al., 1996
Endosulfan sulfate	Oral intubation	Reproduction/blood chemistry	30 days	Endosulfan		0.35	0.15 c	0.92	Sample et al., 1996
Endrin aldehyde	Oral - diet	Reproduction	120 days	Endrin Endrin	Mouse Mouse	0.03	0.092 b	0.92	Sample et al., 1996 Sample et al., 1996
Endrin ketone	Oral - diet	Reproduction	120 days	Chlordane	Mouse	0.03	4.6	9.2	Sample et al., 1996
gamma-Chlordane	Oral-diet	Reproduction	6 generations	1			1	1	1 '
gamma-BHC (Lindane)	Oral-diet	Reproduction	3 generations	Lindane	Rat	0.35	8	NA	Sample et al., 1996
Heptachior	Oral-diet	Reproduction	181 days	Heptachlor	Mink	1	0.1 b	1 1	Sample et al., 1996
Heptachlor epoxide	Oral-diet	Reproduction	181 days	Heptachlor	Mink Rat	0.35	0.1 b		Sample et al., 1996
Methoxychlor	Oral-diet	Reproduction	11 month	Methoxychlor	TART	0.35	 -	<u> </u>	Sample et al., 1996
Semivolatiles		,					Τ		
bis(2- Ethylhexyl)phthalate	Oral-diet	Reproduction	105 days	NA NA	Mouse	0.03	18.3	183	Sample et al., 1996
Di-n-butylphthalate	Oral - diet	Reproduction	105 days	NA NA	Mouse	0.03	550	1833	Sample et al., 1996
Diethylphthalate	Oral - diet	Reproduction	105 days	NA	Mouse	0.03	4583	NA.	Sample et al., 1996
Acenaphthylene					l		NA NA	NA NA	47000 0055
Fluoranthene	Oral-gavage	Reproduction	91	NA NA	Mouse	0.03	500	NA	ATSDR, 2000
Benzo[b]fluoranthene	1			-			NA NA	NA.	
Benzo(k)fluoranthene	1		l		I		NA .	NA 10	0
Benzo[a]pyrene	Oral-Intubation	Reproduction	10 days of gestation	NA	Mouse	0.03	1 ь	10	Sample et al., 1996
i	1						NA NA	NA NA	}
Indeno[1,2,3-cd]pyrene	1		ļ	I.					
					1		NA.	NA NA	
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Total PAH				ļ		-	NA NA	NA NA	

TABLE F-3
Toxicological Endpoints for Mammais
Sauget Area i Ecological Risk Assessment

[RIVER OTTE	R	MUSKRAT						
	Body	Final	Final	Body	Final	Final				
Compound	Weight	NOAEL	LOAEL	Weight	NOAEL	LOAEL				
Jonipouna	(kg)	(mg/kg/d)	(mg/kg/d)	(kg)	(mg/kg/d)	(mg/kg/d)				
Herbicides	109/	(IIIganga)	(mgrkgrd)	(49)	(IIII WAS CA)	(mgs kgra)				
2-4.D	7.4	0.47	2.3	1.274	0.72	3.6				
Dicamba	7.4				•••					
	7.4	0.19	0.63	1.274	0.30	1.0				
Dichloroprop			- 1							
MCPA	7.4	3.5	10	1.274	5.4	16				
MCPP	7.4	1.4	4.2	1.274	2.2	6.5				
Metals										
Aluminum, Total	7.4	0.49	4.9	1.274	0.76	7.6				
Antimony, Total	7.4	0.032		4.074		•				
Arsenic, Total	7.4	1.2	0.32 NA	1.274 1.274	0.049 1.8	0.49 NA				
Barium, Total	7.4	6.4	9.2	1.274	1.8	NA 14				
Cadmium, Total	7.4	0.45	9.2 4.5	1.274	0.70	7.0				
Chromium, Total	7.4	1276	NA	1.274	1982	7.U NA				
Copper, Total	7.4	7.1	9.2	1.274	1962	NA 14				
Copper, rolai	, . 	7.1	3.4	1.214	"	14				
Lead, Total	7,4	3.7	37	1.274	5.8	58				
Manganese	7.4	41	132	1,274	5.6 64	206				
Molybdenum	7.4	0.066	0.66	1.274	0.10	1.0				
		V.000	5.50	1.417	0.10	1.0				
Nickel, Total	7.4	19	37	1.274	29	58				
Silver, Total	7.4	10	104	1.274	16	161				
Zinc, Total	7.4	75	149	1.274	116	232				
Mercury, Total	7.4	0.61	NA .	1.274	0.94	NA				
Methyl mercury	7.4	0.015	0.075	1.274	0.02316726	0.12				
PCBs										
Aroclor-1254	_7,4	0.085	0.17	1.274	0.13	0.26				
Pesticides										
Total DDT	7.4	0.37	1.9	1.274	0.58	2.9				
Aldrin	7.4	0.093	0.47	1.274	0.14	0.72				
a-Chlordane	7.4	1.2	2.3	1.274	1,8	3.6				
delta-BHC	7.4	0.0085	0.085	1.274	0.013	0.13				
Dieldrin	7.4	0.0093	0.093	1.274	0.014	0.14				
Endosulfan I	7.4	0.070	NA	1.274	0 11	NA				
Endosulfan II	7.4	0.070	NA.	1.274	0.11	NA				
Endosulfan sulfate	7,4	0.070	NA	1.274	0.11	NA				
Endrin aldehyde	7.4	0.023	0.23	1.274	0.036	0.36				
Endrin ketone	7.4	0.023	0.23	1.274	0.036	0.36				
gamma-Chlordane	7.4	1.2	2.3	1.274	1.8	3.6				
gamma-BHC (Lindane)	7.4	3.7	NA :	1.274	5.8	NA				
Heptachlor	7.4	0.061	0.61	1.274	0.094	0.94				
Heptachlor epoxide	7.4	0.061	0.61	1.274	0.094	0.94				
Methoxychlor _	7.4	1.9	3.7	1.274	2.9	5.8				
Semivolatiles										
bis(2-	 									
Ethylhexyl)phthalate	7.4	4.6	46.1767617	1.274	7.2	72				
Di-n-butylphthalate	7.4	139	462.524613	1.274	215	718				
	1]						
Diethylphthalate	7.4	1156	NA	1.274	1795	NA				
Acenaphthylene	7.4	NA	NA	1.274	NA	NA				
Fluoranthene	7.4	126	NA	1.274	196	NA				
Benzo[b]fluoranthene	7.4	NA	NA	1.274	NA	NA				
Benzo(k)fluoranthene	7.4	NA	NA	1.274	NA	NA				
Benzo(a)pyrene	7.4	0.25	2.5	1.274	0.39	3.9				
Indeno[1,2,3-cd]pyrene	7.4	NA	NA	1.274	NA	NA				
64				}						
Dibenz[a,h]anthracene	7.4	NA	NA.	1.274	NA	NA				
Total PAH	7.4	NA	NA	1.274	NA	NA				
TEQ	7.4	4.66347E-Q7	~\$35E-06	1.274	7.2396E-07	7.23977E-00				

Table F-3 Toxicological Endpoints for Mammals Sauget Area I Ecological Risk Assessment

Notes:

If the test species' body weight was not identified in the study than the following values were used: Rat = 0.35kg, Mouse = 0.03kg, Mink = 1.0kg

*NOAEL value was derived by applying a LOAEL to NOAEL Ratio of 10 to the LOAEL value.

^cConverted from subchronic to chronic value by division by uncertainty factor of 10.

NA = Not Available/Not Applicable

NOAEL = No Observed Adverse Effect Level

LOAEL = Lowest Observed Adverse Effect Level

References:

Sample, B.E., D.M. Opresko, G.W. Suter II. Toxicological Benchmarks for Wildlife: 1996 Revision. U.S. Department of Energy, Office of Environmental Management. ES/ER/TM-86/R3.

Agency of Toxic Substances and Disease Registry (ATSDR). Toxicological Profiles. 2000

Aulerich, RJ and RK Ringer, 1977. Current status of PCB txicity to mink and effect on their reproduction. Arch. Environ. Contam. Toxicol. 6:279-292.

Byron, W.R., G.W. Bierbower, J.B. Brouwer, and W.H. Hansen. 1967. Pathologic changes in rats and dogs from two-year feeding of solum arsenite or sodium arsenate. Toxicology and Applied Pharmacology. 10:132-147.

Borzelleca, J.F., L.W. Condie Jr., and J.L. Egle Jr. 1988. Short-term toxicity (one to ten-day) gavage of barium chloride in male and female rats. Journal of the American Colloge of Toxicology. 7(5):675-685.

Linder, R.E., T.B. Gaines and R.D. Kimbrough. 1974. The Effect of Polychlorinated Biphenyls on rat Reproduction. Food and Cosmetic Toxicology. 12:

Murray, F.J., F.A. Smith, and K.D. Nitschke. 1979. Three-Generation Reproduction Study of Rats Given 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) in the Diet. Toxicology and Applied Pharmacology. 50:

Appendix F Food Chain Model For Mailard Duck Ingesting Plants in Dead Creek Section F - Average Concentrations Sauget Area I

												Food						ediment ²			Water	
l	NOAEL	LOAEL	NOAEL	LOAEL	Overall	Ratio of	Ratio of	Exposure	Total Conc.	Invertebrate	Proportion	Plant	Proportion	Ingestion	Proportion		Conc.	Dry Sediment	Proportion	Conc.	Ingestion	Proportion
1	Hazard	Hazard	Benchmark	Benchmark	Dose	Site to	Time	Dose	in Food	Tissue	Inverts	Concentration	Plant	Rate	of	Ì	in Sediment	Ing. Rate	of	in Water	Rate	of
Compound	Index	Index	Dose	Dose	mg/kg/day	Forage Area	on Site	mg/kg/day	mg/kg wet	mg/kg	In Diet	mg/kg	In Diet	kg/kg/day	Dose	RAF	mg/kg	kg/kg/day	Dose	mo/t	Vkg/day	Dose
2,4-D	NB	NB	NA NA	NA.	1 84E-08	0.0005	1	0 0000368	0.0000				1.0	0.30	0.00	1.0	0.023	0.0016	10		0.057	0 000
Dicamba	NB	NB	NA.	NA NA	0	0.0005	1	0	0.0000				1.0	0.30	0.00	1.0		0 0016	0.00		0.057	0 000
Dichloroprop	NB	NB	NA .	NA.	1.05E-06	0 0005	1	0.0021	0.0070			0.0070	10	0.30	1.0	1.0	l — —	0.0016	0.00		0.057	0 000
MCPA	NB	NB	NA.	NA	0	0.0005	1	0	0 0000				1.0	0.30	0.00	10		0.0016	0.00		0.057	0.000
MCPP	NB	NB	NA NA	NA	0	0.0005	1	0	0.0000	1			1.0	0.30	0.00	1.0		0.0016	0.00	 	0.057	0.000
Aluminum, Total	1 E-04	NB	109.7	NA NA	0.0159	0 0005	1	31.8	37			37	10	0.30	0.35	1.0	12933	0.0016	0.65	0.25	0.057	0 000
Antimony	NB	NB	NA NA	NA NA	1.99E-05	0.0005	1	0 0397	0.12			0.12	1.0	0.30	0.87	10	3.3	0.0016	0 13		0.057	
Arsenic, Total	2.E-05	7.E-06	5.1	12 84	8.48E-05	0.0005	1	0.170	0.49			0.49	1.0	0.30	0.87	1.0	14	0.0016	0.13	0.0044	0.057	0.0015
Barium, Total	9 E-06	4.E-06	20.8	41.7	0.000182	0.0005	1	0.364	0.0000	1			1.0	0.30	0.00	1.0	223	0.0016	0.98	0.13	0.057	0.020
Cadmium, Total	2.E-05	2.E-06	1 45	20	3.28E-05	0.0005	1	0.0656	0.097	i		0.097	1.0	0.30	0 44	1.0	23	0 0016	0.56		0.057	0 000000
Chromium, Total	2.E-05	5 E-06	1.00	5.00	0.0000232	0.0005	1	0.0464	0.0000			T	1.0	0.30	0.00	1.0	29	0.0016	1.0	i	0.057	0.000
Copper, Total	1.E-05	8.E-06	47.0	61.7	0.000516	0.0005	1	1.03	2			2	1.0	0.30	0.58	1.0	270	0.0016	0.42	0.0052	0.057	0 000
Iron	NB	NB	NA.	NA	0.0166	0.0005	1	33.1	0.0000				1.0	0.30	0.00	1.0	20667	0.0016	1.00	0.68	0.057	0.00
Lead, Total	2.E-04	2.E-05	1.13	11.3	0.000267	0.0005	1	0.534	0.82			0.82	1.0	0.30	0.46	1.0	180	0.0016	0.54	0.0028	0.057	0.00030
Manganese	3 E-07	NB	977	NA	0.000246	0.0005	1	0.491	0.0000			I	1.0	0.30	0.00	1.0	303	0.0016	0.99	0.11	0 057	0.012
Mercury	8.E-05	8.E-06	0.0064	0.064	4.93E-07	0.0005	1	0.000987	0.0000				1.0	0.30	0.00	10	0.62	0.0016	10		0.057	0.0000
Molybdenum	4.E-07	4 E-08	3.50	35.3	1.46E-06	0.0005	1	0.00291	0.0000				1.0	0.30	0.00	1.0	1.7	0.0016	0.95	0.0028	0.057	0 054
Nickel, Total	6.E-06	4.E-06	77.40	107	0.000461	0.0005	1	0.923	1.9			1.9	1.0	0.30	0.62	1.0	220	0.0016	0.38	0.014	0.057	0.00
Silver	NB	NB	NA	NA	0	0.0005	1		0.0000				1.0	0.30	0.00	1.0		0.0016	0.00		0.057	0.0000
Zinc, Total	4.E-04	4.E-05	14.5	131	0.00512	0.0005	1	10.2	23			23	1.0	0.30	0.87	1.0	2083	0.0016	0.33	0.039	0.057	0.00022
Total PCBs	3.E-07	3.E-08	0.2	1.8	6E-08	0.0005	1	0.00012	0.0000				1.0	0.30	0.00	1.0	0.075	0.0016	1.0		0.057	0.0000
Total DDT	9.E-06	9.E-07	0.0028	0.028	2.4E-08	0.0005	1	0.000048	0.0000				1.0	0.30	0.00	1.0	0.030	0.0016	1.0		0.057	0.0000
Aldrin	NB	NB	N	NA NA	1.25E-07	0.0005	1	0.000250	0.00081			0.00081	1.0	0.30	0.97	1.0	0.0041	0.0016	0.026		0.057	0.0000
Alpha Chlordane	1.E-09	3.E-10	2.14	10.7	2.86E-09	0.0005	1	5.73E-06	0.0000				1.0	0.30	0.00	1.0	0.0036	0.0016	1.0		0.057	0.0000
delta-BHC	5.E-10	1.E-10	0.58	2.25	2.72E-10	0.0005	1	5.44E-07	0.0000				1.0	0.30	0.00	1.0	0.00034	0.0016	1.0		0.057	0.0000
Dieldrin	1.E-07	NB	0.077	NA	7.41E-09	0.0005	1	1.48E-05	0.0000				1.0	0.30	0.00	1.0	0.0093	0.0016	1.0		0.057	0.0000
Endosulfan I	2.E-10	NB	10	NA	2.37E-09	0.0005	1	4.75E-08	0.0000				1.0	0.30	0.00	1.0	0.0030	0.0016	1.0		0.057	0.0000
Endosulfan II	4 E-10	NB	10	NA.	4.11E-09	0.0005	1	8.21E-06	0.0000				1.0	0.30	0.00	1.0	0.0051	0.0016	1.0		0.057	0 0000
Endosulfan sulfate	2 E-10	NB	_10	NA	2.24E-09	0.0005	1	4 48E-06	0.0000	l	l :		1.0	0.30	0 00	1.0	0 0028	0.0016	1.0		0.057	0.0000
Endrin aldehyde	7.E-07	7 E-08	0.01	0.1	7.09E-09	0.0005	1	1.42E-05	0.0000	1			1.0	0 30	0.00	1.0_	0 0089	0.0016	10	l	0.057	0.0000
Endrin ketone	6.E-07	6 E-08	0.01	0.1	5.6E-09	0.0005	1	0.0000112	0.0000	l		i	1.0	0.30	0.00	1.0	0.0070	0 0016	1.0	l	0 057	0.0000
Gamma Chlordane	2.E-07	4.E-08	2.14	10.7	4.72E-07	0.0005	1	0 000944	0.0031			0.0031	1.0	0.30	0.98	10	0.0090	0.0016	0.015		0.057	0.0000
gamma-BHC (Lindane)	0.E+00	0.E+00	2.0	20	0_	0.0005	1	0	0.0000	l	l		1.0	0.30	0.00	1.0		0.0016	0.00	.	0.057	0.0000
Heptachlor	NB	NB	NA	NA	2.78E-07	0.0005	1	0.000556	0.0019		L	0.0019	10	0.30	1.0	10	0.00093	0.0016	_ 0.00	l	0.057	0.0000
Heptachlor epoxide	NB	NB	NA.	NA	3.98E-09	0.0005	1	7.95E-06	0 0000	l	L	L	1.0	0.30	0.00	1.0	0.0050	0.0016	1.0	L	0.057	0 0000
Methoxychlor	NB	NB	_NA	NA	1 21E-08	0 0005	1	2 42E-05	0.0000		l	1	1.0	0.30	0.00	1.0	0 015	0.0016	10	l	0.057	0 0000
Total PAHs	2.E-08	2.E-07	40.0	400	6.91E-05	0.0005	1	0.138	0 46	l	L	0.46	1.0	0.30	1.0	1.0	0.13	0 0016	0.00	0.00070	0.057	0.00029
bis(2-ethylhexyl)phthalate	Õ	NB	1.1	NA	0	0.0005	1	0	0.0000		1	l	1.0	0.30	0 00	1.0		0.0016	0.00	L	0.057	0 0000
Di-n-butylohthalate	0	0	0.1	1.1	0	0.0005	1	0	0.0000	i			1.0	0 30	0.00	1.0	1	0.0016	0.00		0 057	0 0000
Diethylphthalate	NB	NB	NA	NA	0	0.0005	1	0	0.0000	1			1.0	0.30	0.00	1.0		0.0016	0.00	1	0.057	0 0000
Dioxin - TEQ	1.E-05	1.E-06	0.000014	0.00014	1.57E-10	0.0005	1	3.14E-07	0.0000			8.5E-08	1.0	0.30	0.081	1.0	0.00018	0.0016	0 92	3.6E-09	0.057	0 00065

Notes:

NA=Not available/applicable NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]
Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the soil component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%; plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Appendix F Food Chain Model For Mallard Duck Ingesting Plants in Dead Creek Section F - Maximum Concentrations Sauget Area I

			ł		l	, ,						Food	_			ì	S	ediment ¹	- 1		Water	
	NOAEL	LOAEL	NOAEL	LOAEL	Overall	Ratio of	Ratio of	Exposure	Total Conc.	Invertebrate	Proportion	Plant	Proportion	Ingestion	Proportion		Conc.	Dry Sediment	Proportion	Conc.	Ingestion	Proportion
	Hazard	Hazard	Benchmark	Benchmark	Dose	Site to	Time	Dose	in Food	Tissue	Inverts	Concentration	Plant	Rate	of	1	in Sediment	Ing. Rate	of	in Water	Rate	of
Compound	Index	Index	Dose	Dose	mg/kg/day	Forage Area	on Site	mg/kg/day	mg/kg wet	mg/kg	In Diet	mg/kg	In Diet	kg/kg/day	Dose	RAF	mg/kg	kg/kg/day	Dose	mg/l	Vkp/day	Dose
2,4-D	NB	N₿	NA.	NA	0.0000368	1	1	0 0000368	0.0				1.0	0.30	0.00	1.0	0.023	0.0016	1.0		0.057	0.000
Dicamba	NB	NB	NA	NA	0	1	1	0	0.0				1.0	0.30	0.00	1,0	1,020	0.0016	0.00		0.057	0.000
Dichloroprop	NB	NB	NA	NA	0.0021	1	1	0.0021	0.0			0 0070	1.0	0.30	1.0	1.0	<u> </u>	0.0016	0.00		0.057	0.000
MCPA	NB	NB	NA.	NA	0	1	1	0	0.0				10	0.30	0.00	1.0		0.0016	0.00		0.057	0.000
MCPP	NB	NB	NA	NA	0_	1	1	0	0.0				1.0	0.30	0.00	1.0		0 0016	0.00		0 057	0.000
Aluminum, Total	4 E-01	NB	109.7	NA	40.4	1	1	40.4	44		I	44	1.0	0.30	0.33	1.0	17000	0 0016	0.67	0.55	0.057	0.00077
Antimony	NB	NB	NA	NA NA	0.0465	1	1	0 0465	0.13			0.13	1.0	0.30	0.84	1.0	4.7	0.0016	0.16		0.057	
Arsenic, Total	4.E-02	2.E-02	5.1	12.84	0.199	1	1	0.199	0.56			0.56	1.0	0.30	0.85	10	19	0.0016	0.15	0.0049	0.057	0.0014
Barium, Total	2.E-02	1.E-02	20.8	41.7	0.439	1	1	0.439	0.0	T	_		10	0.30	0.00	1.0	270	0.0016	0.98	0.13	0.057	0.017
Cadmium, Total	7.E-02	5.E-03	1.45	20	0.104	1	1	0.104	0 10	1	-	0 097	1.0	0.30	0.28	1.0	47	0.0018	0.72		0.057	0.000000
Chromium, Total	6.E-02	1.E-02	1.00	5.00	0.0608	1 1	1	0.0608	0.0				1.0	0.30	0.00	1.0	38	0.0016	1.0		0.057	0.000
Copper, Total	3.E-02	2.E-02	47.0	61.7	1.29	1	1	1.29	2.1			2.1	1.0	0.30	0.49	1.0	410	0.0016	0.51	0.012	0 057	0.00053
Iron	NB	NB	NA NA	NA	41.7	1	1	41.7	0.0				1.0	0 30	0.00	1.0	26000	0.0016	1.0	1	0.057	0.00
Lead, Total	8.E-01	8 E-02	1 13	11.3	0.872	1	1	0.872	1.2			1.2	1.0	0.30	0 41	1.0	320	0.0016	0.59	0.0037	0.057	0.00024
Manganese	8.E-04	NB	977	NA	0.824	1	1	0.824	0.0				1.0	0.30	0.00	10	510	0.0016	0.99	0.14	0.057	0.0098
Mercury	3.E-01	3.E-02	0.0064	0.064	0.00176	1	1	0.00176	0.0				1.0	0.30	0.00	1.0	1.1	0.0016	1.0		0.057	0.0000
Molybdenum	2.E-03	2.E-04	3.50	35.3	0.00608	1	1	0.00608	0.0				1.0	0.30	0.00	1.0	3.7	0.0016	0.97	0.0028	0.057	0.026
Nickel, Total	2.E-02	1.E-02	77.40	107	1.41	1	1	1.41	2.6			2.6	1.0	0.30	0.56	1.0	390	0.0016	0.44	0.021	0.057	0.00
Silver	NB	NB	NA.	NA.	0	1	1		0.0				1.0	0.30	0.00	1.0		0.0016	0.00		0.057	0.0000
Zinc, Total	1	1.E-01	14.5	131	13.7	1	1	13.7	26		1	26	1.0	0.30	0.57	1.0	3700	0.0016	0.43	0.075	0.057	0.00031
Total PCBs	1.E-03	1.E-04	02	1.8	0.000192	1	1	0.000192	0.0				1.0	0.30	0.00	1.0	0.12	0.0016	1.0		0.057	0.0000
Total DDT	2.E-02	2.E-03	0 0028	0.028	0 0000688	1	1	0.0000688	0.0	1			1.0	0.30	0.00	1.0	0.043	0.0016	10		0.057	0.0000
Aldrin	NB	NB	NA.	NA NA	0.000250	1	1	0.000250	0.0		1	0.00081	1.0	0.30	0.97	1.0	0.0041	0 0016	0.026		0.057	0.0000
Alpha Chlordane	4.E-06	8.E-07	2.14	10.7	8.48E-06	1	1	8.48E-06	0.0				1.0	0.30	0.00	1.0	0.0053	0.0016	1.0		0.057	0.0000
delta-BHC	1.E-06	2.E-07	0.56	2.25	5.44E-07	1	1	5.44E-07	0.0				1.0	0.30	0.00	1.0	0.00034	0.0016	1.0		0.057	0.0000
Dieldrin	2.E-04	NB	0 077	NA.	1.49E-05	1	1	1.49E-05	0.0	-	1		1.0	0.30	0.00	1.0	0.0093	0.0016	1.0		0.057	0.0000
Endosulfan I	9.E-07	NB	10	NA.	9.12E-06	1	1	9.12E-06	0.0	T			1.0	0.30	0.00	1.0	0.0057	0.0016	10		0.057	0.0000
Endosulfan ii	1 E-06	NB	10	NA	1.30E-05	1	1	1.30E-05	0.0	1			1.0	0.30	0.00	1.0	0.0081	0.0016	1.0		0.057	0.0000
Endosulfan sulfate	4.E-07	NB	10	NA	4.48E-06	1	1	4.48E-06	0.0		i		1.0	0 30	0.00	1.0	0.0028	0.0016	1.0		0.057	0.0000
Endrin aldehyde	2.E-03	2.E-04	0.01	0.1	0.0000224	1	1	0.0000224	0.0	1	Î		1.0	0.30	0 00	1.0	0.014	0.0016	1.0		0.057	0.0000
Endrin ketone	2.E-03	2.E-04	0.01	0.1	0.000018	1	1	0.000016	0.0				1.0	0.30	0.00	10	0.010	0 0016	1.0		0 057	0.0000
Gamma Chlordane	4.E-04	9.E-05	2.14	10.7	0.000957	1	1	0.000957	0.0	1		0 0031	1.0	0.30	0.97	1.0	0.017	0.0016	0.028		0.057	0.0000
gamma-BHC (Lindane)	0	0.E+00	2.0	20	0	1	1	0	0.0				10	0.30	0.00	1.0		0.0016	0.00		0 057	0.0000
Heptachlor	NB	NB	NA.	NA	0.000571	1	1	0.000571	0.0		T	0.0019	10	0.30	1.0	1.0	0.00093	0.0016	0.00		0.057	0.0000
Heptachlor epoxide	NB -	NB	NA	NA	8.64E-06	1	1	8 64E-06	0.0		T		1.0	0.30	0.00	1.0	0.0054	0.0016	1.0		0.057	0.0000
Methoxychlor	NB	NB	NA.	NA	0.0000384	1	1	0.0000384	0.0		I	I	1.0	0.30	0.00	1.0	0.024	0.0016	1.0		0.057	0.0000
Total PAHs	5.E-03	5.E-04	40.0	400	0.198	1	1	0.198	0.7		1	0.66	1.0	0.30	1.0	1.0	0.13	0.0016	0.00	0.00070	0.057	0.00020
bis(2-ethylhexyl)ohthalate	0	NB	1.1	NA.	Ö	1	1	0	0.0				1.0	0.30	0.00	1.0		0.0016	0.00		0.057	0.0000
Di-n-butylphthalate	ŏ	0.E+00	01	1.1	0	1	1	0	0.0				1.0	0.30	0 00	1.0		0.0016	0.00		0.057	0.0000
Diethylphthalate	NB	NB	NA	NA.	0	1	1	0	0.0				1.0	0.30	0.00	1.0		0.0016	0.00		0.057	0.0000
Dioxin - TEQ	3.E-02	3.E-03	0.000014	0.00014	4.67E-07	1	1	4.67E-07	00	1	1	9.7E-08	1.0	0.30	0.063	1.0	0.00027	0.0016	0.94	9.4E-09	0.057	0.0011

Notes:

NA=Not available/applicable

NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]
Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the soil component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%; plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Αρμετικία F Food Chain Model For Mailard Duck Ingesting Shrimp from the Borrow Pit Lake - Average Concentrations Sauget Area I

						T		T	T -			Food					S	ediment ²			Water ³	
	NOAEL	LOAEL	NOAEL	LOAEL	Overall	Ratio of Site	Time on	Exposure	Total Conc.	Invertebrate	Proportion	Plant	Proportion	Ingestion	Proportion		Conc.	Dry Sediment	Proportion	Conc.	Ingestion	Proportion
	Hazard	Hazard	Benchmark	Benchmark	Dose	to Forage	Site	Dose	in Food	Tissue	Inverts	Concentration	Plant	Rate	of		in Sediment	ing. Rate	of	In Water	Rate	of
Compound	Index	Index	Dose	Dose	mg/kg/day	Area	Ratio	mg/kg/day	mg/kg wet	mg/kg	In Diet	mg/kg	In Diet	kg/kg/day	Dose	RAF	mg/kg	kg/kg/day	Dose	mg/l	Vkg/day	Dose
2,4-D	NB	NB	NA.	NA.	1.36E-07	0.008	1	1.70E-05			1.0			0 40	0.00	1.0	0.0106	0 0016	10		0.057	0.000
Dicamba	NB	NB	NA.	NA .	3.605E-07	0.008	1	4.51E-05			1.0			0.40	0.00	1.0	0.028	0.0016	0.00		0 057	0.000
Dichloroprop	NB	NB	NA.	NA	1.813E-06	0.008	1	2.27E-04			1.0			0.40	0.00	1.0	0.14	0.0016	0 00	i	0.057	0 000
MCPA	NB	NB	NA NA	NA	3.605E-05	0.008	1	4.51E-03	I	I	1.0			0.40	0.00	1.0	28	0.0016	0 00		0.057	0.000
MCPP	NB	NB	NA	NA	3.605E-05	0.008	1	4 51E-03			1.0			0.40	0.00	1.0	2.8	0.0016	0 00		0.057	0.000
Aluminum, Total	2.E-03	NB	109.7	NA NA	0.265	0.008		3.32E+01	28	26	1.0			0.40	0 34	1.0	13667	0.0016	0.66	1.6	0.057	0.0027
Antimony	NB	NB	NA NA	NA	0 000540	0.008	11	6.75E-02	0.16	0.16	1.0			0.40	0 95	1.0	2.2	0.0016	0.053		0.057	
Arsenic, Total	4.E-05	2.E-05	5 1	12.84	0 000206	800.0	1	2.57E-02	l		1.0			0 40	0.00	1.0	16	0.0016	0.97	0.012	0 057	0.026
Barium, Total	2.E-04	1.E-04	20.8	41.7	0.00455	0.008	1	5.69E-01	l		1.0			0.40	0.00	1.0	350	0.0016	0.98	0.16	0.057	0.016
Cadmium, Total	2.E-05	1.E-06	1 45	20	2 69E-05	0.008	1	3.36E-03			10			0.40	0.00	1.0	2.1	0.0016	1.0	1—	0.057	0.000000
Chromium, Total	1.E-03	2.E-04	1.00	5.00	0.001015	0.008	1	1.27E-01	0.23	0.23	1.0			0.40	0.72	1.0	22	0.0018	0.27	0.0041	0.057	0.0018
Copper, Total	6.E-04	4.E-04	47.0	61.7	0.0272	0.008	1	3.40E+00	8.3	8.3	1.0			0.40	0 98	1.0	49	0.0016	0 023	0.0053	0.057	0 000
Iron	NB	NB	NA.	NA .	0.437	0.008	1	5.46E+01			1.0			0 40	0.00	1.0	34,000	0.0016	1.0	3.9	0.057	0.00
Lead, Total	2.E-03	2.E-04	1.13	11.3	0.00187	0.008	1	2.33E-01	0.39	0.39	1.0			0.40	0.67	1.0	48	0.0016	0.33	0 0083	0.057	0.0020
Manganese	2.E-05	NB	977	NA	0.0158	0 008	1	1.98E+00			10		ļ	0.40	0.00	1.0	1,213	0.0016	0.98	0.67	0 057	0.019
Mercury	2.E-04	2.E-05	0.0064	0.064	1.58E-06	0.008	1	1.97E-04			1.0			0.40	0.00	10	0.12	0.0016	1.0		0.057	0.0000
Molybdenum	3.E-06	3.E-07	3.50	35.3	9.45E-08	0.008	1	1.18E-03			10			0.40	0.00	1.0	0.60	0.0016	0.81	0.0040	0.057	0.19
Nickel, Total	8.E-06	6 E-06	77.40	107	0.000611	0.008	1	7.64E-02			1.0			0.40	0.00	1.0	47	0.0018	0.99	0.012	0.057	0.0086
Silver	NB	NB	NA_	NA.	0.0003027	0.008	1	3.78E-02	0.090	0.090	1.0			0.40	0.00	1.0	1.1	0.0016	0.00		0.057	0.0000
Zinc, Total	4.E-03	4.E-04	14.5	131	0.0552	0.008	1	6.90E+00	16	16	1.0			0.40	0.93	1.0	310	0.0016	0.072	0.031	0.057	0.00025
Total PCBs	1.E-06	1.E-07	02	1.8	2.048E-07	0.008	_!_	2.58E-05			1.0			0.40	0.00	1.0	0.016	0.0016	0.00		0.057	0.0000
Total DDT	4.E-05	4.E-06	0.0028	0.028	1.16E-07	0.008	1	1.45E-05			1.0			0.40	0.00	1.0	0.0091	0.0016	1.0		0.057	0.0000
Aldrin	NB	NB	NA .	NA_	5.632E-08	0.008		7.04E-06		ļ	1.0			0.40	0.00	1.0	0.0044	0.0016	0.00		0.057	0.0000
Alpha Chiordane	1.E-08	2.E-09	2.14	10.7	2.08E-08	0.008		2.60E-06			1.0			0.40	0.00	1.0	0.0016	0.0016	1.0		0.057	0.0000
delta-BHC	3.E-08	8.E-09	0.56	2.25	1.76E-08	0.008	!	2.20E-06			1.0			0.40	0.00	1.0	0.0013	0.0016	0.94	2.2E-08	0.057	0.056
Dieldrin	5.E-07	NB	0.077	NA	4.21E-08	0.008		5.26E-06		ļ	1.0			0.40	0.00	1.0	0.0033	0.0016		0.0000010	0.057	0.011
Endosulfan I	4.E-09	NB	10	NA_	3.82E-08	0.008	}	4.78E-06			10			0.40	0.00	1.0	0.0029	0.0016	0.97	2.4E-06	0.057	0.028
Endosulfan II	1.E-08	NB	10	NA NA	1.088E-07	0.008		1.36E-05 1.08E-05			1.0			0.40	0.00	1.0	0.0066	0.0018	0.00	3.2E-06	0.057	0.0000
Endosulfan sulfate	9.E-09	NB	10	<u>NA</u>	8.64E-08 2.19E-08	0.008	_	2.74E-06			1.0			0.40	0 00	1.0	0.0016	0.0016 0.0016	0.98	3.2E-06 3.2E-06	0.057	0.066
Endrin aldehyde	2.E-06 8 E-06	2.E-07	0.01	0.1	8.32E-08	0.008		1.04E-05			1.0		 	0.40	0.00	10	0.0010	0.0018	0.99	2 7E-06	0.057	0.000
Endrin ketone	2 E-06	8.E-07	2.14	10.7	3.60E-08	0.008		4 50E-06		i	1.0			0.40	0.00	1.0	0.0028	0.0016	1.0	275.00_	0 057	0.0000
Gamma Chlordane gamma-BHC (Lindane)	3.E-08	3.E-09	2.14	20	6 337E-08	0.008		7.92E-06			1.0			0.40	0.00	1.0	0.0028	0.0016	0.97	3.8E-06	0.057	0.0000
Heptachlor	NB	NB	NA NA	NA NA	5.748E-08	0.008		7.19E-06		·	1.0			0 40	0.00	10	0.0044	0.0016	0.98	2.6E-06	0.057	0.020
	NB	NB NB	NA NA	NA NA	6 21E-08	0.008	i	7.76E-06			1.0		 	0 40	0.00	1.0	0.0048	0.0016	0.99	9.6E-07	0.057	0 0070
Heptachlor epoxide	NB NB	NB NB	NA NA	NA NA	5.632E-07	0.008	— ·; —,	7 04E-05			1.0		·	0.40	0.00	10	0.044	0.0016	0.00	9.0L-07	0 057	0 0000
Methoxychlor Total PAHs	8.E-08	8.E-09	40.0	400	3.072E-06	0.008	- ; - -	3 84E-04			10	· 		0.40	0.00	1.0	0.24	0.0016	0.00		0 057	0.0000
bis(2-ethylhexyl)phthalate	3.E-06	NB	11	NA NA	3 072E-06	0.008		3.84E-04		 	1.0			0.40	0 00	1.0	0.24	0.0016	0.00		0.057	0.0000
Di-n-butylphthalate	3 E-05	3.E-06	0.1	1.1	3.072E-06	0.008		3.84E-04			1.0			0.40	0.00	1.0	0.24	0.0016	0.00		0.057	0 0000
	NB	NB	NA NA	NA -	0.000144	0.008		1.80E-02	0.044	0.044	1.0			0.40	0.98	1.0	0.24	0.0016	0.021		0.057	0 0000
Diethylphthalate	4.E-04	4.E-05	0.000014	0.00014	5.85E-09	0.008	_;-	7.31E-07	1.72E-06	1.72E-06	1.0			0.40	0.94	1.0	2.7E-05	0.0016	0.059	3.3E-10	0.057	0 0000
Dioxin - TEO	7.E-U4	4.E-U3	0.000014	0.00014	U.UUL-U8	0.000		1.912-91	1122.00	1.126-00	1.0			V.7V) V. 6-4		2.12.00	U.0010	0.003	3.36-10	0.001	0 0000

Notes:

NA=Not available/applicable NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the soil component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%, plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Appendix F Food Chain Model For Mallard Duck Ingesting Shrimp from the Borrow Pit Lake - Maximum Concentrations Sauget Area I

												Food						rdiment ²			Water ³	
	NOAEL	LOAEL	NOAEL	LOAEL	Overall	Ratio of	Time on	Exposure	Total Conc.	Invertebrate	Proportion		Proportion	Ingestion	Proportion		Conc.	Dry Sediment	Proportion	Conc.		Diametrica
<u> </u>	Hazard	Hazard	Benchmark	Benchmark	Dose	Forage Area	Site	Dose	in Food	Tissue	Inverts	Concentration	Plant	Rate	of	\rightarrow	in Sediment	Ing. Rate	of	in Water	Ingestion Rate	Proportion
Compound	Index	Index	Dose	Dose	mg/kg/day	to Site	Ratio	mg/kg/day	ma/kg wet	mg/kg	In Diet	mg/kg	In Diet	kg/kg/day	Dose	RAF	mg/kg	kg/kg/day	Dose	mg/l	Vkg/day	Dose
2.4-D	NB	NB	NA .	NA	0.0000176	1	1	0.0000176	0.0		1.0		2.0.	0.40	0.00	1.0	0.011	0.0016	1.00	111971	0.057	0.000
Dicamba	NB	NB	NA NA	NA NA	0	1-1	1	0	0.0		1.0			0.40	0.00	1.0	0 011	0.0016	0.00		0.057	0.000
Dichloroprop	NB	NB	NA.	NA	<u> </u>	11	1	(0.0	t	1.0			0.40	0.00	1.0	- 0	0.0016	0.00		0.057	0.000
MCPA	NB	NB	NA NA	NA .	0	1	1	<u> </u>	0.0		1.0			0.40	0.00	1.0	0	0.0016	0 00		0.057	0.000
MCPP	NB	NB	NA.	NA	0	1	1		0.0	 	1.0			0.40	0.00	1.0	0	0.0016	0.00		0.057	0.000
Aluminum, Total	3.E-01	NB	109.7	NA	37.0	1	1	37.0	28	28	1.0	_		0.40	0.30	1.0	16000	0.0016	0.69	3,4	0.057	0.000
Antimony	NB	NB	NA NA	NA	0.0675	1	1	0.0675	0.16	0.16	1.0			0.40	0.95	1.0	22	0.0016	0 052	3.7	0.057	5 0032
Arsenic, Total	5.E-03	2.E-03	5.1	12.84	0.0280	1	1	0.0280	0.0	1	1.0			0.40	0.00	1.0	17	0.0016	0.97	0.015	0.057	0.030
Barium, Total	3.E-02	2.E-02	20.8	41.7	0.690	1	1	0.690	0.0	 	1.0			0.40	0.00	1.0	420	0.0016	0 97	0.32	0.057	0.026
Cadmium, Total	3 E-03	2.E-04	1.45	20	0.00432	1	1	0 00432	0.0		10			0.40	0.00	1.0	2.7	0.0016	1.0	0.52	0.057	0.000000
Chromium, Total	1.E-01	3.E-02	1.00	5.00	0.134	1	1	0.134	0.23	0.23	1.0			0.40	0.69	1.0	26	0.0016	0.31	0.0041	0.057	0.0017
Copper, Total	7.E-02	6 E-02	47.0	61.7	3.42	1	1	3.42	8.3	8.3	1.0			0.40	0.97	1.0	64	0.0016	0.030	0.0074	0.057	0.000
Iron	NB	NB	NA.	NA	61.3	1	1	61.3	0.0		1.0		-	0.40	0.00	1.0	38000	0.0016	0.98	8.7	0.057	0.006
Lead, Total	2.E-01	2 E-02	1,13	11.3	0.250	1	1	0.250	0.39	0 39	1.0			0.40	0.62	1.0	58	0.0016	0.37	0.020	0.057	0.0045
Manganese	2.E-03	NB	977	NA .	2.34	1	1	2.34	0.0	1	10			0 40	0.00	1.0	1400	0.0016	0.96	1.7	0.057	0.041
Mercury	4.E-02	4.E-03	0.0064	0.064	0.000256	1	1	0.000258	0.0		1.0			0.40	0.00	1.0	0 16	0.0016	1.0		0.057	0.0000
Molybdenum	5.E-04	5.E-05	3.50	35.3	0.00170	1	1	0.00170	0.0		1.0			0.40	0.00	1.0	0.92	0.0016	0.87	0.0040	0.057	0.13
Nickel, Total	1.E-03	8.E-04	77.40	107	0.0872	1	1	0.0872	0.0		1.0			0.40	0.00	10	54	0.0016	0.99	0.015	0.057	0.010
Silver	NB	NB	NA.	NA	0	1	1		0.090	0 090	1.0			0 40	0.00	1.0	1	0.0016	0.00		0.057	0.0000
Zinc, Total	5.E-01	5.E-02	14.5	131	6.99	11	1	6.99	16	16	1.0			0.40	0 91	1.0	370	0.0016	0.085	0 048	0.057	0.00039
Total PCBs	0.E+00	0.E+00	02	1.8	0	11	1	0	0.0		1.0			0.40	0.00	1.0	0.000	0.0016	0 00		0.057	0 0000
Total DDT	1.E-02	1.E-03	0.0028	0.028	0.0000352	11	1	0.0000352	0.0		1.0			0.40	0 00	1.0	0.022	0.0016	1.0		0.057	0.0000
Aldrin	NB	NB	NA	NA .	0	1	1	00	0.0		1.0			0.40	0.00	1.0	0.0000	0.0016	0.00		0.057	0 0000
Alpha Chlordane	2.E-06	5.E-07	2.14	10.7	5.12E-06	11	1	5.12E-06	0.0	L	1.0			0.40	0.00	1.0	0.0032	0 0016	1.00		0.057	0.0000
delta-BHC	2 E-07	6.E-08	0.56	2.25	1.24E-07	1_1	11	1.24E-07	0.0	1	1.0		l	0.40	0.00	1.0	0.0000	0.0016	0.00	2.2E-06	0.057	1.0
Dieldrin	1.E-05	NB.	0.077	NA .	8.57E-07	11_	1	8.57E-07	0.0		1.0			0.40	0.00	1.0	0 00050	0.0016	0.93	1.0E-06	0.057	0.066
Endosulfan I	8.E-07	NB	10	NA	7.98E-06	11	1	7.98E-06	0.0		1.0	ļ		0.40	0.00	1.0	0.0049	0 0016	0.98	2.4E-06	0.057	0.017
Endosulfan II	0	NB	10	NA	0	1	1	0	0.0		1.0			0.40	0.00	1.0	0 0000	0.0016	0 00		0.057	0.0000
Endosulfan sulfate	2.E-06	NB	10	NA	1.54E-05	1	!	1.54E-05	0.0		10			0.40	0.00	1.0	0.0095	0.0016	0.99	3.2E-06	0.057	0.012
Endrin aldehyde	4 E-04	4.E-05	0.01	0.1	3.70E-06	11	1	3.70E-06	0.0	ļ	1.0	ļ		0.40	0 00	1.0	0.0022	0.0016	0.95	3.2E-06	0.057	0.049
Endrin ketone	1.E-04	1 E-05	0.01	0.1	1.30E-08	11		1.30E-06	0.0	 	1.0			0.40	0.00	1.0	0.00072	0.0016	0.88	2.7E-06	0.057	0.12
Gamma Chlordane	2.E-06	4 E-07	2.14	10.7	4.80E-06	1	1	4.80E-06	0.0	·}	1.0		 	0.40	0.00	1.0	0.0030	0.0016	1.0	0.05.65	0.057	0.0000
gamma-BHC (Lindane)	4.E-06	4.E-07	2.0	20	7.89E-06	1 1	<u> </u>	7.89E-06	0.0	 -	1.0			0.40	0.00	1.0	0.0048	0.0016	0.97	3.8E-08	0.057	0.027
Heptachlor	NB	NB	NA .	NA	1.64E-07	1	1	1.84E-07	0.0	 	1.0	ļ	ļ	0.40	0.00	1.0	0.0000	0.0016	0.00	2.9E-06	0.057	1.0
Heptachlor epoxide	NB	NB	NA	NA	7.73E-06	1_1_		7.73E-06	0.0	 	1.0			0.40	0.00	1.0	0.0048	0.0016	0.99	9 6E-07	0.057	0.0070
Methoxychior	NB	NB	NA_	NA	0	1_1_		0	0.0		10			0.40	0.00	1.0	0.0000	0.0016	0.00	ļ	0.057	0.0000
Total PAHs	0.E+00	0.E+00	40.0	400	0	1	1	0	0.0	·	1.0			0.40	0.00	1.0	0.0000	0.0016	0.00	ļ	0.057	0.0000
bis(2-ethylhexyl)phthalate	0.E+00	NB	1,1	NA	0	1	1	<u> </u>	0.0		10	ļ		0.40	0.00	1.0	0.0000	0 0016	0.00	l	0 057	0.0000
Di-n-butylphthalate	0.E+00	0.E+00	0.1	1.1	0		1	0	0.0	}	1.0		<u> </u>	0.40	0.00	1.0	0.0000	0.0016	0.00	L	0.057	0.0000
Diethylphthalate	NB	NB	NA NA	NA _	0 0176	1-1-	<u> </u>	0.0176	0 044	0.044	1.0			0.40	1.0	1.0	0 0000	0.0016	0.00	4 05 40	0.057	0.0000
Dioxin - TEQ	5.E-02	5.E-03	0.000014	0.00014	7.51E-07		<u> </u>	7.51E-07	1.7E-06	1.7E-06	10		<u>i</u>	0.40	0.92	1.0	3.9E-05	0.0016	0.063	4.2E-10	0.057	0.0000

Notes:

NA=Not available/applicable

NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

"For the soil component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%; plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Appendix F Food Chain Model For Great Blue Heron Ingesting Fish in the Borrow Pit Lake - Average Concentrations Sauget Area I

					Time and Area						_	Food					Water	
- 	NOAEL	LOAEL	NOAEL	LOAEL	Normalized	Site Area to	Ratio of	Exposure	Total Conc.	Large Fish Tissue			Proportion	Innestina	Proportion	Conc.	Ingestion	Proportion
	Hazard	Hazard	Benchmark	Benchmark	Exposure Dose	Forage Area	Time in	Dose	in Food	Concentration		Concentration	Foragers	Rate	of	in Water	Rate	of
Contaminant	Index	Index	Dose ma/ka/d	Dose ma/kg/d	mg/kg/day	Ratio	Area	mg/kg/day	mg/kg wet	mg/kg wet	In Diet	mg/kg wet	in Diet	kg/kg/day	Dose	ma/l	Vkg/day	Dose
2.4-D	NB	NB	NA	NA.	0.00E+00	1.00	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00	1.79	0.045	0.00
Dicamba	NB	NB	NA NA	NA	5,11E-04	1.00	0.75	6.81E-04	0.00	0.0070	0.27	0.0026	0.73	0.18	1.0	——	0.045	0.00
Dichloroprop	NB	NB	NA	NA.	9.01E-04	1.00	0.75	1.20E-03	0.01	0.0088	0.27	0.0067	0.73	0.18	1.0	!	0 045	0.00
MCPA	NB	NB	NA .	NA	3.17E-01	1.00	0.75	4.23E-01	2.4	1,1	0.27	2.8	0.73	0.18	1.0	 	0.045	0.00
MCPP	NB	NB	NA .	NA	0.00E+00	1.00	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00	-	0.045	0.00
Aluminum, Total	4.E-02	NB	109.7	NA	4.58E+00	1.00	0 75	6.11E+00	34	16	0.27	40	0.73	0.18	0.99	1.6	0.045	0.012
Antimony	NB	NB	NA NA	NA	0.00E+00	1.00	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00	1	0.045	0.00
Arsenic, Total	8.E-05	3.E-05	5.1	12.84	3.93E-04	1.00	0.75	5.24E-04	0.00		0.27		0.73	0 18	0.00	0.012	0.045	1.0
Barium, Total	3.E-04	1.E-04	20.8	41.7	5.46E-03	1.00	0.75	7.28E-03	0.00		0.27	<u> </u>	0.73	0.18	0.00	0.16	0.045	1.0
Cadmium, Total	0.E+00	0.E+00	1.45	20	0.00E+00	1.00	0.75	0.00E+00	0.00		0.27		0.73	0 18	0.00	1	0.045	0.00
Chromium, Total	5.E-02	1.E-02	1.00	5.00	4.84E-02	1.00	0.75	6.48E-02	0.36	0.53	0.27	0 29	0 73	0.18	1.0	0.0041	0.045	0.00
Copper, Total	3.E-03	2 E-03	47.0	61.7	1.23E-01	1.00	0.75	1.64E-01	0.91	0.69	0.27	0.99	0.73	0.18	1.0	0 0053	0.045	0.00
Iron	NB	NB	NA .	NA	1.31E-01	1.00	0.75	1.74E-01	0.00		0.27		0.73	0.18	0 00	3.9	0.045	1.0
Lead, Total	4.E-02	4.E-03	1.13	11.3	4.39E-02	1.00	0.75	5.86E-02	0.32	0.24	0.27	0.36	0.73	0.18	0.99	0.0083	0.045	0.0064
Manganese	2.E-05	NB	977	NA	2.25E-02	1.00	0.75	3.00E-02	0.00		0.27		0.73	0.18	0.00	0.67	0.045	1.0
Mercury	4.E+00	4.E-01	0.0084	0.064	2.62E-02	1.00	0.75	3.49E-02	0.19	0.086	0 27	0.23	0.73	0.18	1.0		0.045	0.00
Molybdenum	4.E-05	4.E-06	3.50	35.3	1.35E-04	1.00	0.75	1.80E-04	0.00		0.27		0.73	0.18	0.00	0.0040	0.045	1.0
Nickel, Total	5.E-06	4.E-06	77.40	107	3.90E-04	1.00	0.75	5.21E-04	0.00	<u> </u>	0.27		0.73	0 18	0.00	0.012	0.045	1.0
Silver	NB	NB	NA NA	NA .	0.00E+00	1.00	0.75	0.00E+00	0.00	ļ <u>—</u>	0.27		0.73	0.18	0.00		0.045	0.00
Zinc, Total	2.E-01	3.E-02	14.5	131	3.59E+00	1.00	0.75	4.79E+00_	27	18	0.27	30	0.73	0.16	1.0	0.031	0.045	0.00
Total PCBs	5.E-02	5.E-03	0.2	1.8	8.42E-03	1.00	0.75	1.12E-02	0.062	0.15	0.27	0.030	0.73	0.18	10	I	0.045	0.00
Total DDT	5.E-01	5.E-02	0.0028	0.028	1.34E-03	1.00	0.75	1.79E-03	0.010	0.016	0.27	0.0077	0.73	0.18	1.0	1	0.045	0.00
Aldrin	NB	NB	NA .	NA	0.00E+00	1.00	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00		0.045	0.00
Alpha Chlordane	9.E-05	2.E-05	2.14	10.7	1,98E-04	1.00	0.75	2.64E-04	0.00	0.0054	0.27		0.73	0.18	1.0		0.045	0.00
delte-BHC	1.E-07	3.E-08	0.58	2.25	7.43E-08	1.00	0.75	9.90E-08	0.00		0.27		0.73	0.18	0.00	2.2E-08	0,045	1.0
Dieldrin	4.E-07	NB	0.077	NA	3.38E-08	1.00	0.75 0.75	4.50E-08	0.00		0.27		0.73 0.73	0.18	0.00	0.000001 2.4E-06	0.045	1.0
Endosulfan I	8.E-09	NB	10	NA	8.10E-08 0.00E+00	1.00	0.75	1.08E-07 0.00E+00	0.00		0.27	ļ 	0.73	0.18	0.00	2.4E-00	0.045	1.0 0.00
Endosulfan II	0.E+00	NB	10	NA NA	1.08E-07	1.00	0.75	1.44E-07	0.00		0.27		0.73	0.18	0.00	3.2E-06	0.045	1.0
Endosulfan sulfate	1.E-08	NB	10		1.08E-07	1.00	0.75	1.44E-07	0.00	 	0.27		0.73	0.18	0.00	3.2E-06	0.045	1.0
Endrin aldehyde	1.E-05	1.E-06	0.01	0.1	9.11E-08	1.00	0.75	1.22E-07	0.00		0.27		0.73	0.18	0.00	2.7E-08	0.045	1.0
Endrin ketone	9.E-06 2.E-04	9.E-07	2.14	10.7	3.57E-04	1.00	0.75	4.76E-04	0.00	0.0098	0 27	 	0.73	0 18	1.0	2.75-00	0.045	0.00
Gamma Chlordane		3 E-05 6.E-09	2.0	20	1.25E-07	1.00	0.75	1.71E-07	0.00	0.5080	0.27	 	0.73	0.18	0.00	3.8E-06	0.045	1.0
gamma-BHC (Lindane)	6.E-08 NB		2.0 NA	NA NA	1.02E-04	1.00	0.75	1.38E-04	0.00	0.0028	0.27		0.73	0.18	1.0	2.6E-06	0.045	0.00
Heptachlor	NB NB	NB NB	NA -	NA NA	3.24E-08	1.00	0.75	4.32E-08	0.00	J.5020	0.27	 	0.73	0.18	0.00	9.6E-07	0.045	1.0
Heptachlor epoxide	NB NB	NB NB	NA -	NA NA	0.00E+00	1.00	0.75	0.00E+00	0.00	 	0.27	 	0.73	0.18	0.00		0.045	0.00
Methoxychlor	3 E-04	3.E-05	40.0	400	1.01E-02	1.00	0.75	1.34E-02	0.074		0.27	0 10	0.73	0.18	1.0	1	0.045	0.00
Total PAHs	2 E-02	NB	1.1	NA NA	2.14E-02	1.00	0.75	2.85E-02	0.16	0.090	0.27	0.18	0.73	0.18	1.0		0.045	0.00
bis(2-ethylhexyl)phthala(1.E-02	1.E-03	0.1	- 11	1.17E-03	1.00	0.75	1.56E-03	0.0088	0.032	0.27		0.73	0.18	1.0	t	0.045	0.00
Di-n-butylphthalate	1.E-02 NB	1.E-03 NB	NA -		3.68E-03	1.00	0.75	4.90E-03	0.027	0.018	0.27	0.031	0.73	0.18	1.0	t	0.045	0.00
Diethylphthalate	6 E-02	6.E-03	0.000014	0.00014	8.96E-07	1.00	0.75	1.19E-06	0.00	8.5E-06	0.27	5.9E-06	0.73	0.18	1.0	3.3E-10	0.045	0.00
Dioxin - TEQ	0.E-02	0.6-03	0.000014	V.00014	0.50E-0/	1.00	<u> </u>	1,100-00	<u>, ,,,,,,</u>	D.U.C00		J.J. 40			1.0			

Notes: NA = Not available/applicable NB = Benchmark not available

Food Chain Model Components:
Hazard Index Estimate = [Food Dose] + [Sadiment Dose] + [Drinking Water Dose]
Toxicological Benchmark

Appendix F Food Chain Model For Great Blue Heron ingesting Fish in the Borrow Pit Lake- Average Concentrations Sensitivity Analysis on Foraging Area Sauget Area I

					Time and Area		_					Food					Water	
1	NOAEL	LOAEL	NOAEL	LOAEL	Normalized	Site Area to	Ratio of	Exposure	Total Conc	Large Fish Tissue			Proportion	Ingestion	Proportion	Conc.		Proportion
	Hazard	Hazard	Benchmark	Benchmark	Exposure Dose	Forage Area	Time in	Dose	in Food	Concentration		Concentration	Foragers	Rate	of	in Water	Rate	of
Conteminant	Index	Index	Dose mg/kg/d	Dose mg/kg/d	mg/kg/day	Ratio	Area	mg/kg/day	mg/kg wet	mg/kg wet	In Diet	mg/kg wet	in Diet	kg/kg/day		mo/l	Vko/day	Dose
2.4-D	NB	NB	NA NA	NA NA	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00		0.045	0.00
Dicamba	NB	NB	NA NA	NA.	3.43E-07	0.0007	0.75	6.81E-04	0.00	0.0070	0.27	0.0026	0.73	0.18	1.0		0.045	0.00
Dichloroprop	NB	NB	NA NA	NA NA	6.05E-07	0.0007	0.75	1.20E-03	0.01	0.0066	0.27	0.0067	0.73	0.18	1.0		0.045	0.00
MCPA	NB	NB	NA NA	NA.	2.13E-04	0.0007	0.75	4.23E-01	2.4	1.1	0.27	2.8	0.73	0.18	1.0		0.045	0.00
MCPP	NB	NB	NA NA	NA.	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27	1.0	0.73	0.18	0.00	·	0.045	0.00
Aluminum, Total	3.E-05	NB	109.7	NA NA	3.07E-03	0.0007	0.75	6.11E+00	34	18	0.27	40	0.73	0.18	0.99	16	0.045	0.012
Antimony	NB	NB	NA NA	NA	0.00E+00	0.0007	0.75	0.00E+00	0.00	·•	0.27		0.73	0.18	0.00		0.045	0.00
Arsenic Total	5.E-08	2.E-08	5.1	12.84	2.64E-07	0.0007	0.75	5.24E-04	0.00	i —	0.27		0.73	0.18	0.00	0.012	0.045	1.0
Barium, Total	2.E-07	9.E-08	20.8	41.7	3.66E-06	0.0007	0.75	7.28E-03	0.00	 	0.27		0.73	0.18	0.00	0.16	0.045	1.0
Cadmium, Total	0.E+00	0.E+00	1.45	20	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00	1	0.045	0.00
Chromium, Total	3.E-05	7.E-08	1.00	5.00	3.25E-05	0.0007	0.75	6.46E-02	0.36	0.53	0.27	0.29	0.73	0.18	1.0	0.0041	0.045	0.00
Copper, Total	2.E-06	1.E-06	47.0	61.7	8.27E-05	0.0007	0.75	1.84E-01	0.91	0.69	0.27	0.99	0.73	0.18	1.0	0.0053	0.045	0.00
iron	NB	NB	NA	NA	8.76E-05	0.0007	0.75	1.74E-01	0.00		0.27		0.73	0.18	0.00	3.9	0.045	1.0
Lead, Total	3.E-05	3.E-06	1.13	11.3	2.95E-05	0.0007	0.75	5.86E-02	0.32	0.24	0.27	0.36	0.73	0.18	0.99	0.0083	0.045	0.0064
Manganese	2.E-08	NB	977	NA NA	1.51E-05	0.0007	0.75	3.00E-02	0.00		0.27		0.73	0.18	0.00	0.67	0.045	1.0
Mercury	3.E-03	3.E-04	0.0064	0.064	1.76E-05	0.0007	0.75	3.49E-02	0.19	0.086	0.27	0.23	0.73	0.18	1.0		0.045	0.00
Molybdenum	3.E-08	3.E-09	3.50	35.3	9.06E-08	0.0007	0.75	1.80E-04	0.00		0.27		0.73	0.18	0.00	0.0040	0.045	1.0
Nickel, Total	3.E-09	2.E-09	77.40	107	2.62E-07	0.0007	0.75	5.21E-04	0.00		0.27		0.73	0,18	0.00	0.012	0.045	1.0
Silver	NB	NB	NA NA	NA .	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00		0.045	0.00
Zinc, Total	2.E-04	2.E-05	14.5	131	2.41E-03	0.0007	0.75	4.79E+00	27	18	0.27	30	0.73	0.18	1.0	0.031	0.045	0.00
Total PCBs	3.E-05	3.E-06	0.2	1.8	5.65E-06	0.0007	0.75	1.12E-02	0.062	0.15	0.27	0.030	0 73	0.18	1.0		0.045	0.00
Total DDT	3.E-04	3.E-05	0.0028	0.028	9.00E-07	0 0007	0.75	1.79E-03	0.010	0.016	0.27	0.0077	0.73	0.18	10	T	0.045	0.00
Aldrin	NB	NB	NA	NA	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27		0.73	0.18	0.00		0.045	0.00
Alpha Chiordane	6.E-08	1.E-08	2.14	10.7	1.33E-07	0.0007	0.75	2.64E-04	0.00	0.0054	0.27		0.73	0.18	1.0		0.045	0.00
delta-BHC	9.E-11	2.E-11	0.56	2.25	4.98E-11	0.0007	0.75	9.90E-08	0.00	I	0.27		0.73	0.18	0.00	2.2E-06	0.045	1.0
Dieldrin	3.E-10	NB	0.077	NA	2.27E-11	0.0007	0.75	4.50E-08	0.00		0.27		0 73	0.18	0.00	0.000001	0.045	1.0
Endosulfan I	5.E-12	NB	10	NA	5.44E-11	0.0007	0.75	1.08E-07	0.00		0.27		0 73	0.18	0.00	2.4E-06	0.045	1.0
Endosulfan II	0.E+00	NB	10	NA .	0.00E+00	0.0007	0.75	0.00E+00	0.00		0.27		0 73	0.18	0.00		0.045	0.00
Endosulfan suffate	7.E-12	NB	10	NA	7.25E-11	0.0007	0.75	1.44E-07	0.00		0.27		0.73	0.18	0.00	3.2E-06	0.045	1.0
Endrin aldehyde	7.E-09	7 E-10	0.01	0.1	7.25E-11	0.0007	0.75	1.44E-07	0.00		0.27		0.73	0.18	0.00	3.2E-06	0.045	1.0
Endrin ketone	6.E-09	6.E-10	0.01	0.1	6.12E-11	0.0007	0.75	1.22E-07	0.00		0.27		0.73	0.18	0.00	2.7E-08	0.045	1.0
Gamma Chlordane	1.E-07	2.E-08	2.14	10.7	2.40E-07	0.0007	0.75	4.76E-04	0.00	0.0098	0.27		0.73	0.18	1.0	1	0.045	0.00
gamma-BHC (Lindane)	4.E-11	4.E-12	2.0	20	8.61E-11	0.0007	0.75	1.71E-07	0.00		0.27	L	0.73	0.18	0.00	3.8E-06	0.045	1.0
Heptachlor	NB	NB	NA	NA NA	6.86E-08	0.0007	0.75	1.38E-04	0.00	0.0028	0.27		0.73	0.18	1.0	2.6E-06	0.045	0.00
Heptachlor epoxide	NB	NB	NA	NA .	2.17E-11	0.0007	0.75	4.32E-08	0.00		0.27		0.73	0.18	0.00	9.6E-07	0.045	1.0
Methoxychlor	NB	NB	NA .	NA _	0.00E+00	0.0007	0.75	0.00E+00	0.00	<u> </u>	0.27	L	0.73	0.18	0.00	L	0.045	0.00
Total PAHs	2.E-07	2.E-08	40.0	400	6.75E-06	0.0007	0.75	1.34E-02	0.074		0.27	0.10	0.73	0.18	1.0	ļ <u>.</u>	0.045	0.00
bis(2-ethylhexyl)phthalat	1.E-05	NB	1.1	NA	1.43E-05	0.0007	0.75	2.85E-02	0.16	0.090	0.27	0.18	0.73	0.18	1.0	L	0.045	0.00
Oi-n-butylphthalate	7.E-06	7.E-07	0.1	1.1	7.83E-07	0.0007	0.75	1.56E-03	0.0086	0.032	0 27	1	0.73	0.18	1.0	1	0.045	0.00
Diethylphthalate	NB	NB	NA	NA	2.47E-06	0.0007	0.75	4.90E-03	0.027	0.018	0.27	0.031	0.73	0.18	1.0	L	0.045	0.00
Dioxin - TEQ	4.E-05	4 E-06	0 000014	0.00014	6.02E-10	0.0007	0.75	1.19E-06	0.00	8.5E-06	0.27	5.9E-06	0.73	0.18	1.0	3.3E-10	0.045	0.00

Notes: NA = Not available/applicable NB = Benchmark not available

Food Chain Model Components:
Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]
Toxicologial Benchmark

					Time and Area			1 7				Food					Water	
	NOAEL	LOAEL	NOAEL	LOAEL	Normalized	Site Area to	Ratio of	Exposure	Total Conc.	Large Fish Tissue	Proportion		Proportion	Ingestion	Proportion	Conc.	Ingestion	Proportion
	Hazard	Hazard	Benchmark	Benchmark	Exposure Dose	Forage Area	Time in	Dose	in Food	Concentration		Concentration		Rate	of	in Water	Rate	of
Contaminant	Index	Index	Dose mg/kg/d	Dose mg/kg/d	mg/kg/day	Ratio	Area	mg/kg/day	ma/ka wet	mo/kg wet	In Diet	mg/kg wet	in Diet	kg/kg/day	Dose	mg/l	Vkg/day	Dose
2.4-D	NB	NB	NA.	NA.	0.00E+00	1.00	1.00	0.00E+00	0.00	Hage ring week	0.27	Ingray wet	0.73	0.18	0.00	1110	0.045	0.00
Dicamba	NB	NB.	NA NA	NA.	4.34E-04	1.00	1.00	4.34E-04	0.00	0.0019	0.27	0.0026	0.73	0.18	1.0		0.045	
Dichlorogo	NB	NB.	NA NA	NA NA	1.20E-03	1.00	1.00	1 20E-03	0.0087	0.0066	0.27	0.0028	0.73	0.18	1.0	l———		0.00
MCPA	NB	NB	NÃ.	NA.	5.21E-01	1.00	1.00	5.21E-01	2.9	1.8	0.27	3.3	0.73		10	 	0.045	0.00
MCPP	NB	NB NB	NA NA	NA.	0.00E+00	1.00	1.00	0.00E+00	0.00		0.27	3.3	0.73	0.18	0.00		0.045	0.00
Aluminum Total	8.E-02	NB -	109.7	NA.	8.59E+00	1.00	1.00	8.59E+00	47	33	0.27	52	0.73	0.18	0.00	3.4	0.045	0.00
Antimony	NB	NB	NA.	NA NA	0.00E+00	1.00	1.00	0.00E+00	0.00	33	0.27	5 <u>Z</u>			0.96	3.4		0.018
Arsenic, Total	1 E-04	5.E-06	5.14	12.84	6.75E-04	1.00	1.00	6.75E-04	0.00		0.27	 	0.73	0.18			0.045	0.00
Barium, Total	7.E-04	3.E-04	20.8	41.7	1.44E-02	1.00	1.00	1.44E-02	0.00		0.27		0.73	0.18	0.00	0.015	0.045	1.0
		0.E+00	1.45	20	0.00E+00	1.00	1.00	0.00E+00	0.00			ļ	0.73	0.18	0.00	0.32	0.045	1.0
Cadmium, Total	0.E+00	2.E-02	1.45	5.00	8.74E-02	1.00	1.00	8.74E-02	0.00		0.27	0.00	0.73	0.18	0.00		0.045	0.00
Chromium, Total	9.E-02			81.7						0.93	0.27	0.32	0.73	0.18	1.0	0.0041	0.045	0.00
Copper, Total	6.E-03	4.E-03	47.0	91.7 NA	2 67E-01	1.00	1.00	2.67E-01	1.5	0.89	0.27	1.7	0.73	0.18	1.0	0.0074	0.045	0.00
Iron	NB	NB	NA NA		3.92E-01	1.00	1.00	3.92E-01	0.00	4	0.27		0.73	0.18	0.00	8.7	0.045	1.0
Lead, Total	8.E-02	8.E-03	1.13	11.3	9.06E-02	1.00	1.00	9.06E-02	0.50	0.25	0,27	0.59	0.73	0.18	0.99	0.020	0.045	0.010
Manganese	8.E-05	NB	977	NA NA	7.65E-02	1.00	1.00	7.65E-02	0.00		0 27		0.73	0.18	0.00	1.7	0.045	1.0
Mercury	1.E+01	1.E+00	0.0064	0.064	9.15E-02	1.00	1.00	9.15E-02	0.51	0.26	0.27	0.60	0.73	0.18	1.0		0.045	0.00
Molybdenum	5.E-05	5.E-08	3.50	35,3	1.80E-04	1.00	1.00	1.80E-04	0.00		0.27	L	0.73	0.18	0.00	0.0040	0.045	1.0
Nickel, Total	9.E-06	8.E-06	77.40	107	6.75E-04	1.00	1.00	6.75E-04	0.00		0.27	1	0.73	0.18	0.00	0.015	0 045	1.0
Silver	NB	_NB	NA.	NA .	0.00E+00	1.00	1.00	0.00E+00	0.00		0.27		0.73	0.18	0.00	ļ	0.045	0.00
Zinc, Total	4.E-01	4.E-02	14.5	131	5.41E+00	1.00	1.00	5.41E+00	30	22	0.27	33	0.73	0.18	1.0	0.048	0.045	0.00
Total PCBs	1.E-01	1.E-02	0.2	1.8	2.07E-02	1.00	1.00	2.07E-02	0.11	0.32	0.27	0.039	0.73	0.18	1.0	L	0.045	0.00
Total DDT	1.E+00	1.E-01	0.0028	0.026	2.72E-03	1.00	1.00	2.72E-03	0.015	0.029	0.27	0.010	0.73	0.18	1.0	L	0.045	0.00
Aldrin	NB	NB	NA.	NA NA	0.00E+00	1.00	1.00	0.00E+00	0.00	<u> </u>	0.27	l	0.73	0.18	0.00		0.045	0.00
Alpha Chlordane	3.E-04	5.E-05	2.14	10.7	5.83E-04	1.00	1.00	5.83E-04	0.00	0.012	0.27		0.73	0.18	1.0		0.045	0.00
delta-BHC	2.E-07	4.E-08	0.56	2.25	9.90E-08	1.00	1.00	9.90E-08	0.00		0.27		0.73	0.18	0.00	2.2E-08	0.045	1.0
Dieldrin	6.E-07	NB	0.077	×	4.50E-08	1.00	1.00	4.50E-08	0.00	T	0.27		0.73	0.18	0.00	0.000001	0.045	1.0
Endosulfan i	1.E-08	NB	10	NA	1.08E-07	1.00	1.00	1.08E-07	0.00		0.27		0.73	0.18	0.00	2.4E-06	0.045	1.0
Endosulfan (1	0.E+00	NB	10	NA	0.00E+00	1.00	1.00	0.00E+00	0.00		0.27		0.73	0.18	0.00		0.045	0.00
Endosulfan suffate	1.E-08	NB	10	NA.	1.44E-07	1.00	1.00	1.44E-07	0.00		0 27	Γ	0.73	0.18	0.00	3.2E-06	0 045	1.0
Endrin aldehyde	1.E-05	1.E-06	0.01	0.1	1.44E-07	1.00	1.00	1.44E-07	0.00		0.27		0.73	0.18	0.00	3.2E-08	0 045	1.0
Endrin ketone	1.E-05	1.E-06	0.01	0.1	1.22E-07	1.00	1.00	1 22E-07	0.00		0.27		0 73	0.18	0.00	2.7E-08	0.045	10
Gamma Chiordane	4.E-04	9.E-05	2.14	10.7	9.23E-04	1.00	1.00	9.23E-04	0.0051	0.019	0.27		0.73	0 18	1.0		0 045	0.00
gamma-BHC (Lindane)	9.E-08	9 E-09	2	20	1.71E-07	1.00	1.00	1.71E-07	0.00		0.27		0.73	0 18	0.00	3.8E-08	0.045	1.0
Heptachlor	NB	NB	NA.	NA.	1.38E-04	1.00	1.00	1.36E-04	0.00	0.0028	0.27		0.73	0.18	10	2.9E-08	0.045	0.00
Hentachior ecoxide	NB	NB	NA.	NA NA	4.32E-08	1.00	1.00	4.32E-08	0.00	 	0.27	1	0.73	0.18	0.00	9.6E-07	0 045	1.0
Methoxychlor	NB	NB.	NA.	NA.	0.00E+00	1.00	1,00	0.00E+00	0.00	 	0.27	·	0.73	0.18	0.00		0.045	0.00
Total PAHs	3.E-04	3.E-05	40.0	400	1.34E-02	1.00	1.00	1.34E-02	0.074		0.27	0.10	0.73	0.18	10	<u> </u>	0.045	0.00
bis(2-ethylhexyl)phthalate	3.E-02	NB	1.1	NA -	3.49E-02	1.00	1.00	3.49E-02	0.19	0.097	0.27	0.23	0.73	0.18	1.0	I	0.045	0.00
	1.E-02	1.E-03	0.11	1.1	1.56E-03	1.00	1.00	1.58E-03	0.0088	0.032	0.27	T	0.73	0.18	1.0		0 045	0.00
Di-n-butylphthalate	NB	NB	NA.	NA NA	5.74E-03	1.00	1.00	5.74E-03	0.032	0.018	0.27	0.037	0.73	0.18	1.0	1	0.045	0.00
Diethylphthalate		1.E-02	0.000014	0.00014	1.87E-08	1.00	1.00	1.87E-08	0.00	1.5E-05	0.27	8.5E-06	0.73	0.18	1.0	4.2E-10	0.045	0.00
Dioxin - TEQ	1.E-01_	1 1.E-U2	0.000014	0.00014	1.075-00	1.00	1.00	1.07.2-00	0.00	1,54-44	U.E.	0.56-00		<u> </u>		, v.a. IV	0.010	

Notes: NA = Not available/applicable NB = Benchmark not available

Food Chain Model Components: Hazard Index Estimate = [Food Dosel + [Sediment Dosel + [Drinking Water Dose] Toxicological Benchmark

Appendix F Food Chain Model For Muskrat Ingestion of Plants in Dead Creek Section F - Average Concentrations Sauget Area i

			NOAEL	LOAEL	Time and Area				T		Food					diment			Water	
-	NOAEL	LOAEL	Benchmark	Benchmark	Normalized	Ratio of	Site Area to	Exposure	Total Conc.	Plant	Proportion	Ingestion	Proportion	 		Dry Sediment	Demortion	Conc.		Deposition
	Hazard	Hazard	Dose	Dose	Exposure Dose	Time on	Forage Area	Dose	in Food	Concentration	Plant	Rate	of	—	in Sediment	Ing Rate	of	in Water	Ingestion Rate	Proportion
Compound	Index	Index	mg/kg/d	mg/kg/d	mg/kg/day	Site	Ratio	mg/kg/day	mg/kg wet	mg/kg wet	In Diet	kg/kg/day	Dose	RAF	mg/kg dry	ko/ko/day	Dose	mg/l	l/kg/day	Of Dose
2.4-D	6.E-05	1.E-05	0.72	3.6	4.60E-05	1	1	4.60E-05	0	graywa	1.0	0.34	0	1.0	0 023	0.0020	1.0	"'9"	0.98	0
Dicamba	0.E+00	0 E+00	0.3	1 1	0.00E+00	<u> </u>	1 1	0.00E+00			1.0	0.34	0	1.0	- 0023	0.0020	0		0.98	0
Dichloroprop	Bench NA	Bench NA	NA.	NA.	2.38E-03		1	2.38E-03	0.0070	0.0070	10	0.34	1.0	1.0		0.0020	0	\	0.98	- 0
MCPA	0.E+00	0.E+00	5.4	18	0.00E+00	1	1	0.00E+00	0	0.0070	10	0.34	0	1.0		0.0020	 0 -		0.98	0
MCPP	0.E+00	0 E+00	2.2	6.5	0.00E+00	1	1	0.00E+00	0	 	1.0	0.34	0	1.0	<u> </u>	0.0020	0	 	0.98	0
Aluminum, Total	5.E+01	5.E+00	0.756	7.58	3.87E+01	1	<u> </u>	3.87E+01	37	37	1.0	0.34	0.33	1.0	12933	0.0020	0.67	0.25	0.98	0.0062
Antimony	9.E-01	9.E-02	0.049	0.49	4.58E-02	1	1	4.56E-02	0.12	0.12	1,0	0.34	0.86	1.0	3.3	0.0020	0.07	0.23	0.98	0.0002
Arsenic, Total	1.E-01	Bench NA	1.8	NA	1.99E-01	1	1	1.99E-01	0.49	0.49	1.0	0.34	0.84	1.0	14	0.0020	0.14	0.0044	0.98	0.022
Barium, Total	5.E-02	4.E-02	10.5	15.1	5.71E-01	1	1	5.71E-01	0		1.0	0 34	0	10	223	0.0020	0.78	0.0044	0.98	0.022
Cadmium, Total	1.E-01	1.E-02	0.7	7	7.86E-02	1	1	7.86E-02	0.097	0.097	1.0	0.34	0.42	1.0	23	0.0020	0.58	- <u>" "</u> -	0.98	0
Chromium, Total	3.E-05	Bench NA	1982	NA	5.80E-02	1	1	5.80E-02	0		1.0	0.34	0	1.0	29	0.0020	1.0		0.98	0
Copper, Total	1.E-01	9 E-02	11	14.3	1.23E+00	1	1	1.23E+00	2	2	10	0.34	0.56	1.0	270	0 0020	0.44	0 0052	0.98	0 0042
Iron	Bench NA	Bench NA	NA	NA	4.20E+01	1	1	4.20E+01	0	 -	1.0	0.34	0	1.0	20667	0.0020	0.98	0.68	0.98	0.016
Lead, Total	1.E-01	1.E-02	5.8	58	6.42E-01	1	1	6.42E-01	0.82	0.82	1.0	0.34	0.43	1.0	180	0.0020	0.58	0.0028	0.98	0.0043
Manganese	1.E-02	3.E-03	64	206	7.12E-01	1	1	7.12E-01	0	1	1.0	0.34	0	1.0	303	0.0020	0.85	0.11	0.98	0.15
Mercury	5.E-02	1.E-02	0.023	0.12	1.23E-03	1	1	1.23E-03	0	 	1.0	0.34	0	1.0	0.62	0.0020	1.0	 -	0.98	0.15
Molybdenum	6.E-02	6.E-03	0.1	1	6.18E-03	1	1	6.18E-03	0		1.0	0.34	0	1.0	1.7	0.0020	0.56	0.0028	0.98	0.44
Nickel, Total	4.E-02	2.E-02	29	58	1.10E+00	1	1 1	1 10E+00	1.9	1.9	1.0	0.34	0.59	1.0	220	0.0020	0.40	0.014	0.98	0 012
Silver	0.E+00	0.E+00	15.9	161	0.00E+00	1	1 1	0.00E+00	0		1.0	0.34	0	1.0	- -	0.0020	0	0.014	0.98	0
Zinc, Total	1.E-01	5.E-02	116	232	1.20E+01	1	1	1.20E+01	23	23	1.0	0.34	0 65	1.0	2083	0 0020	0.35	0.039	0.98	0.0031865
Total PCBs	1.E-03	6.E-04	0.132	0.26	1 50E-04	1	1	1.50E-04	0		1.0	0.34	0	1.0	0.075	0.0020	1.0	- 	0.98	0
Total DDT	1.E-04	2.E-05	0.6	3	6.00E-05	1	1	6.00E-05	0		10	0.34	0	1.0	0.030	0.0020	1.0	t	0.98	0
Aldrin	2.E-03	4.E-04	0.14	0.72	2.84E-04	1	1	2.84E-04	0.00081	0.00081	1,0	0.34	0.97	1.0	0.0041	0.0020	0.029	-	0.98	ō
Alpha Chlordane	4.E-06	2.E-06	1.8	3.6	7.18E-06	1	1 1	7.16E-06	0		1.0	0.34	0	1.0	0.0036	0.0020	1.0		0.98	0
delta-BHC	5.E-05	5.E-06	0.013	0.13	6.80E-07	1	1	6.80E-07	0	†	10	0.34	0	1.0	0.00034	0.0020	1.0	t	0.98	0
Dieldrin	1.E-03	1.E-04	0.014	0.14	1.85E-05	1	1	1.85E-05	0		1.0	0.34	0	1.0	0.0093	0.0020	1.0	1	0.98	0
Endosulfan I	5.E-05	Bench NA	0 11	NA	5.93E-06	1	1	5.93E-06	0		1.0	0.34	0	1.0	0.0030	0.0020	1.0	1	0.98	0
Endosulfan II	9.E-05	Bench NA	0.11	NA.	1.03E-05	1	1	1.03E-05	0		1.0	0.34	0	10	0.0051	0.0020	1.0		0.98	0
Endosulfan sulfate	5.E-05	Bench NA	0.11	NA	5.80E-06	1	1	5.60E-06	0		1.0	0.34	0	1.0	0.0028	0.0020	1.0		0.98	0
Endrin aldehyde	5.E-04	5.E-05	0.036	0.36	1.77E-05	1	1	1.77E-05	0		1.0	0 34	0	1.0	0.0089	0.0020	1.0		0.98	0
Endrin ketone	4.E-04	4.E-05	0.036	0.36	1 40E-05	1	1	1 40E-05	0		1.0	0.34	0	1.0	0.0070	0.0020	1.0		0.98	0
Gamma Chlordane	6.E-04	3.E-04	1.8	3.6	1.07E-03	1	1	1.07E-03	0.0031	0.0031	10	0.34	0.98	1.0	0.0090	0.0020	0.017	I	0.98	0
gamma-BHC (Lindane)	0.E+00	0 E+00	5.8	58	0.00E+00	_ 1 _	1	0.00E+00	0		1.0	0.34	0	1.0	T	0.0020	0		0.98	0
Heptachior	7.E-03	7.E-04	0.094	0.94	6.31E-04	1	1	6.31E-04	0.0019	0.0019	1.0	0.34	1.0	1.0	0.00093	0.0020	0.0029	I	0.98	0
Heptachlor epoxide	1.E-04	1.E-05	0.094	0.94	9.94E-08	1	1	9.94E-06	0		1.0	0.34	0	1.0	0.0050	0.0020	1.0		0.98	0
Methoxychlor	1.E-05	5.E-08	2.9	5.8	3.02E-05	1	1	3.02E-05	0		1.0	0.34	0	1.0	0.015	0.0020	1.0		0.98	0
bis(2-ethylhexyl)phthalate	0.E+00	0.E+00	7.17	71.7	0.00E+00	1	1 1	0.00E+00	0		1.0	0.34	0	1.0	<u> </u>	0.0020	0		0.98	0
DI-n-butylphthalate	0.E+00	0.E+00	215	718	0.00E+00	1	111	0.00E+00	0		1.0	0.34	0	1.0	L	0.0020	0		0.98	0
Diethylphthalate	0.E+00	Bench NA	1795	NA	0.00E+00	1	1	0.00E+00	0		1.0	0.34	0	1.0		0.0020	0		0.98	0
Acenaphthylene	Bench NA	Bench NA	NA	NA	1.09E-02	. 1	11_	1.09E-02	0.032	0.032	1.0	0.34	1.0	1.0		0.0020	0		0.98	0
Fluoranthene	5.E-06	Bench NA	196	NA	9.46E-04	1	11	9.46E-04	0		1.0	0.34	0	1.0	0.13	0.0020	0.27	0.00070	0.98	0.73
Benzo(b)fluoranthene	Bench NA	Bench NA	NA	NA	2.01E-02	1	1	2.01E-02	0.059	0.059	1.0	0.34	1.0	1.0	L- · · · -	0.0020	0	.	0.98	0
Benzo(k)fluoranthene	Bench NA	Bench NA	NA	NA	1.77E-02	11	11	1.77E-02	0.052	0.052	1.0	0.34	1.0	10	L	0.0020	0	l	0.98	0
Benzo(a)pyrene	1.E-01	1.E-02	0.39	3.9	3.83E-02	1	1	3.83E-02	0.11	0.11	1.0	0.34	1.0	1.0		0.0020	0		0.98	0
Indeno(1,2,3-c-d)pyrene	Bench NA	Bench NA	NA	NA	6.55E-02	1	1	6.55E-02	0.19	0.19	1.0	0.34	1.0	1.0		0.0020	0		0.98	0
Dibenz(a.h)anthracene	Bench NA	Bench NA	NA	NA	2.58E-02	1	1	2.58E-02	0.076	0.076	1.0	0.34	1.0	1.0	T	0.0020	0	L	0.98	0
Dioxin - TEQ	7.E-01	7.E-02	7.2E-07	0.0000072	4.93E-07	1	1	4.93E-07	1.7E-07	1.7E-07	1.0	0.34	0.12	1.0	0.00022	0.0020	0.87	4.0E-09	0.98	0.0080

Notes:

NA=Not available/applicable

Bench NA = Benchmark not available

Bolded values indicate a Hazard index greater than 1

Site area is larger than foraging area therefore a site area to forage area ratio of 1 is applied to the exposure dose

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Water Ingestion Rate (EPA 1993)

**For the soil component, we convert the food ingestion rate from wet weight to dry weight (plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994).

Appendix F Food Chain Model For Muskrat Ingestion of Plants in Dead Creek Section F - Maximum Concentrations Sauget Area i

			NOAEL	LOAEL	Time and Area			T T			East					ediment				
	NOAEL	LOAEL	Benchmark	Benchmark	Normalized	Ratio of	Site Area to	Exposure	Total Conc.	Plant	Proportion	Ingestion	Proportion		Conc.			-	Water	· - · - ·
	Hazard	Hazard	Dose	Dose	Exposure Dose	Time on	Forage Area	Dose	in Food	Concentration	Plant	Rate				Dry Sediment		Conc.	Ingestion	
Compound	Index	Index	mg/kg/d	mg/kg/d	mg/kg/day	Site	Ratio	mg/kg/day	mg/kg wet	mg/kg wet	In Diet	kg/kg/day	Dose	RAF	In Sediment		of	in Water	Rate	of
2.4-D	6.E-05	2.E-05	0.72	2.6	4.60E-05	3.10	1.000	4.60E-05	0.0	LINDAG wer	1.0	0.34	0.00		mg/kg dry	kg/kg/day	Dose	mg/l	l/kg/day	Dose
Dicamba	0.E+00	0 E+00	0.3	1	0.00E+00	-	 	0.00E+00	0.0	<u> </u>	1.0	0.34	0.00	1.0	0.023	0 0020	1.0		0.98	0.000
Dichloroprop	Bench NA	Bench NA	NA NA	NA NA	2.38E-03		 	2.38E-03	0.0	0.007	1.0	0.34	1.00	1.0		0.0020	0.00		0.98	0.000
MCPA	0 E+00	0.E+00	5.4	16	0.00E+00	!	- : -	0.00E+00	0.0	0.007	1.0	0.34	0.00	1.0		0.0020	0.00		0.98	0.000
MCPP	0.E+00	0.E+00	2.2	6.5	0.00E+00	i	1 1	0.00E+00	0.0	 	1.0	0.34		1.0		0.0020	0.00		0.98	0.000
Aluminum, Total	7.E+01	7.E+00	0.756	7.56	4.95E+01		· 	4,95E+01	44	44		0.34	0.00	1.0		0.0020	0.00		0.98	0.000
Antimony	1.E+00	1.E-01	0.049	0.49	5.38E-02	:	- : -	5.36E-02	0.13	0.13	10	0.34	0.30	1.0	17000	0.0020	0.69	0.55	0.98	0.011
Arsenic, Total	1.E-01	Bench NA	1.8	NA	2.33E-01	1	╆╌╁╌	2.33E-01	0.56	0.13	1.0	0.34	0.82	1.0	4.7	0.0020	0.18	0.0040	0.98	0.000
Barium, Total	6 E-02	4.E-02	10.5	15.1	6.67E-01	- ;	1	6.67E-01	0.0	0.30	1.0	0.34	0.00	10	19	0.0020	0.16_	0.0049	0.98	0 021
Cadmium, Total	2.E-01	2.E-02	0.7	7	1.27E-01	 	 	1.27E-01	0.10	0.097		0.34		1.0	270	0.0020	0.81	0.13	0.98	0.19
Chromium, Total	4.E-05	Bench NA	1982	NA NA	7 60E-02	-	 	7 60E-02	0.0	0.097	1.0	034	0.26	1.0	47	0.0020	0.74		0.98	0.000
	1.E-01		11	14.3	1.55E+00	:	 		2.1			0.34	0.00	1.0	38	0.0020	1.0		0.98	0.000
Copper, Total	Bench NA	1.E-01	NA NA	NA NA	1.55E+00 5.30E+01		1	1.55E+00 5.30E+01	0.0	2.1	1.0	0.34	0.46	1.0	410	0.0020	0.53	0.012	0.98	0.0076
Iron		Bench NA									1.0		0.00	1.0	26000	0.0020	0.98	1	0.98	0.018
Lead, Total	2.E-01	2.E-02	5.8 64	58 208	1.05E+00 1.16E+00		 	1.05E+00	0.0	1.2	1.0	0.34	0.39	1.0	320	0 0020	0.61	0.0037	0.98	0 0034
Manganese	2 E-02	6.E-03		0.12			 	1.18E+00	0.0		1.0		0.00	1.0	510	0.0020	0.88	0.14	0.98	0.12
Mercury	1.E-01	2.E-02	0.023		2.20E-03 1.01E-02		 	2.20E-03	0.0	ļ <u> </u>	1.0	0.34	0.00	1.0	1.1	0.0020	1.0	0.0000	0.98	0.000
Molybdenum	1.E-01	1.E-02	0.1	- 1 58			 - 	1.01E-02	2.6		1.0		0.00	1.0	3.7	0.0020	0.73	0.0028	0.98	0.27
Nickel, Total	6.E-02 0.E+00	3.E-02	29	161	1.68E+00 0.00E+00	 !	 	1.68E+00 0.00E+00	0.0	2.6	1.0	0.34	0.52	1.0	390	0.0020	0.46	0.021	0.98	0 012
Silver		0.E+00	15.9	232		 	1-1-		26			0.34	0.00	1.0		0.0020	0.00	2 272	0.98	0.000
Zinc, Total	1.E-01	7.E-02	116		1.83E+01	<u> </u>	·	1.63E+01	0.0	26	1.0	0.34	0.54	1.0	3700	0.0020	0.45	0.075	0.98	0.0045
Total PCBs	2.E-03	9.E-04	0.132	0.26	2.40E-04		1	2.40E-04	0.0		1.0		0.00	1.0	0.12	0.0020	1.0		0.98	0.000
Total DOT	1.E-04	3.E-05	0.8	0.72	8.60E-05 2.84E-04		1	8.60E-05 2.84E-04	0.0	0.00081	1.0	0.34	0.00	1.0	0.043	0.0020	1.0 0.03		0.98	0.000
Aldrin	2.E-03	4.E-04	0.14	3.6		1	 		0.0	0.00061		0.34	0.00	1.0		0.0020			0.98	0.000
Alpha Chlordane	6.E-06	3.E-06	1.8		1.06E-05		 	1.06E-05	0.0		1.0	0.34	0.00	1.0	0.0053	0.0020	1.0		0.98	0.000
delta-BHC	5.E-05	5.E-08	0.013	0.13	6.80E-07	1		6.80E-07	0.0	 -	1.0	0.34			0.00034	0.0020	1.0		0.98	0.000
Dieldrin	1.E-03	1.E-04	0.014	0,14 NA	1.86E-05 1.14E-05		 	1.86E-05 1.14E-05	0.0	 	1.0	0.34	0.00	1.0	0.0093	0.0020	1.0	ļ	0.96	0.000
Endosulfan I	1.E-04	Bench NA	0.11		1.14E-05 1.62E-05		 	1.14E-05 1.62E-05	0.0	 	1.0	0.34	0.00	1.0	0.0057	0.0020	1.0		0.98	0.000
Endosulfan II	1.E-04	Bench NA	0.11	NA NA	5.60E-08		 	5 60E-06	0.0		1.0	0.34	0.00	1.0	0.0028	0.0020	1.0		0.98	0.000
Endosulfan sulfate	5.E-05	Bench NA	0.11		2.80E-05	 }	 	2.80E-05	0.0		1.0	0.34	0.00	1.0	0.0028	0.0020	1.0		0.98	0.000
Endrin aldehyde	8.E-04	8.E-05	0 036	0.38	2.00E-05		1	2.00E-05	0.0		1.0	0.34	0.00	1.0	0.014	0.0020	1.0		0.98	0.000
Endrin ketone	6 E-04	6.E-05	0.038	0.36				1.09E-03	0.0	0.0031	1.0	0.34	0.97	1.0	0.010	0.0020	0.031		0.98	0 000
Gamma Chlordane	6.E-04	3.E-04	18	3.6 58	1.09E-03 0.00E+00		1-1-	0.00E+00	0.0	0,0031	1.0	0.34	0.00	1.0	0.017	0.0020	0.00		0.98	0.000
gamma-BHC (Lindane)	0.E+00	0.E+00	5.8	0.94	6.48E-04		·	6.48E-04	0.0	0.0019	10	0.34	1.0	1.0	0.00093	0.0020	0.00		0.98	0.000
Heptachlor	7.E-03	7.E-04	0.094	0.94	1.08E-05		\ - \ \ \	1.08E-05	0.0	0.0019	1.0	0.34	0.00	1.0	0.0054	0.0020	1.0		0.98	0.000
Heptachlor epoxide	1.E-04	1.E-05	0 094		4.80E-05	 -	1— 1	4.80E-05	0.0	 	1.0	0.34	0.00	1.0	0.024	0.0020	1.0		0.98	0.000
Methoxychlor	2.E-05	8.E-06	2.9	5.8 71.7	0.00E+00	- -	 	0.00E+00	0.0	·	1.0	0.34	0.00	1.0	0.024	0.0020	0.00		0.98	0.000
bis(2-ethylhexyl)phthalate	0.E+00	0.E+00	7.17				· -		0.0	 	1.0	0.34	0.00	1.0		0.0020	0.00	 	0.98	0.000
Di-n-butylphthalate	0.E+00	0.E+00	215	718 NA	0 00E+00	 		0.00E+00	0.0	 	1.0	0.34	0.00	1.0		0.0020	0.00	l	0.98	0.000
Diethylphthalate	0.E+00	Bench NA	1795	- 11:	0.00E+00	 	 - 		0.0	0.022		0.34	1.0	1.0		0.0020	0.00	 -	0.98	0.000
Acenaphthylene	Bench NA	Bench NA	NA _	NA NA	1.09E-02			1.09E-02		0.032	1.0	0.34		1.0	0.13	0.0020	0.00	0.00070	0.98	0.000
Fluoranthene	5.E-06	Bench NA	196	NA.	9.46E-04		1	9.46E-04	0.0	0.050	10	0.34	0.00	1.0	0.13	0.0020	0.00	0.00070	0.98	0.000
Benzo(b)fluoranthene	Bench NA	Bench NA	NA NA	NA	2.01E-02	1	 !	2.01E-02		0.059	1.0		1.0							0.000
Benzo(k)fluoranthene	Bench NA	Bench NA	NA _	NA.	1.77E-02	<u> </u>		1 77E-02	0.05	0.052	1.0	0.34	1.0	1.0		0.0020	0.00		0.98	0.000
Benzo(a)pyrene	1.E-01	1.E-02	0.39	3.9	4.76E-02	!	 _ ! _ 	4.76E-02	0.14	0.14	1.0	0.34	1.0	1.0	-			 		
Indeno(1,2,3-c-d)pyrene	Bench NA	Bench NA	NA .	NA.	1.02E-01		1	1 02E-01	0.30	0.30	1.0	0.34	1.0	1.0		0.0020	0.00	!	0.98	0.000
Dibenz(a,h)anthracene	Bench NA	Bench NA	NA.	NA.	2.58E-02	 ! -	-	2.58E-02	0.078	0.078	10	0.34	1.0	1.0	0.00000	0.0020	0.00	1.01E-08	0.98	0.000
Dioxin · TEQ	1.E+00	1.E-01	7.20E-07	7 20E-08	7.44E-07	I 1	1 1	7.44E-07	0.0	2.0E-07	1.0	0.34	0.092	1.0	0 00033	0.0020	0.89	i iuirOR	0.98	0.013

Notes:

NA=Not available/applicable

Bench NA = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Site area is targer than foraging area therefore a site area to forage area ratio of 1 is applied to the exposure dose

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Water Ingestion Rate (EPA 1993).

[&]quot;For the soil component, we convert the food ingestion rate from wet weight to dry weight (plant moisture=70%) and then calculate a soil ingestion rate from the soil proportion in the diet (dry weight) estimated in Beyer et al. (1994).

Appendix F Food Chain Model For Muskrats Ingesting Clams in the Borrow Pit Lake - Average Concentrations Sauget Area I

			NOAEL	LOAEL	Forage Area		7			Foo	-d		_		ediment			Water	
	NOAEL	LOAEL	Benchmark	Benchmark	Normalized	Time on	Site Area to	Exposure	Total Conc.	Proportion	Ingestion	Proportion		Conc	Dry Sediment	Dropostico	Conc		Proportion
	Hazard	Hazard	Dose	Dose	Exposure Dose	Site	Forage Area	Dose	In Food	Clam	Rate	of		in Sediment	Ing. Rate	of	in Water	Ingestion	
Compound	Index	Index	mg/kg/d	mg/kg/d	mg/kg/day	Ratio	Ratio	mg/kg/day	mg/kg wet	In Diet	kg/kg/day	Dose	RAF	mg/kg dry	kg/kg/day	Dose	mg/l		Dose
2.4-D	3.E-05	6 E-06	0.72	3.6	2 12E-05	1	1 1	2.12E-05	III WELL	1.0	0.34	0	1.0	0.011	0.0020	1	1119/1	I/kg/day	
Dicamba	2.E-04	8.E-05	0.72	1	5.63E-05		 	5.63E-05		1.0	0.34	0	1.0	0.011		0		0.98	0
Dichloroprop	NB	NB		NA	6.54E-03	-	1 ; -	6.54E-03	0.018	1.0	0.34	0.98	1.0	0.028	0 0020			0.98	0
MCPA	1.E-03	4.E-04	5.4	16	5.63E-03	- i	 	5.63E-03	U.U18	1.0					0.0020	0 043		0.98	0
MCPP	6.E-01	2.E-01	2.2	6.5	1.37E+00	1	 	1.37E+00	 _	1.0	0.34	0	1.0	2.8	0.0020	0.0000		0.98	0
	4.E+01	4.E+00	0.758	7.58	3.25E+01		 :		4.0		0.34	1.0	1.0	2.8	0.0020	0.0041		0.98	0
Aluminum, Total Antimony	9.E-02	9.E-03	0.049	0.49	4.43E-03			3.25E+01	11	1.0	0.34	0.11	1.0	13867	0.0020	0.84	1.6	0.98	0.048
						 -	;	4.43E-03		1.0	0.34	0	1.0	2.2	0.0020	1.0		0.98	0
Arsenic, Total	2.E-01	NB 0.5.00	1.8	NA NA	3.69E-01		4—— <u>·</u>	3.69E-01	0.96	1.0	0.34	0.88	10	16	0.0020	0.085	0.012	0.98	0.031
Barlum, Total	0.E-02	6.E-02	10.5	15.1	8.58E-01	!	1	8.58E-01		1.0	0.34	0	1.0	350	0.0020	0.82	0.16	0.98	0.18
Cadmium, Total	6.E-02	6.E-03	0.7	 ,	4.50E-02	11	1_1_	4.50E-02	0.12	1.0	0.34	0.91	1.0	2.1	0.0020	0.093		0.98	0
Chromium, Total	1.E-04	NB	1982	NA	2.79E-01	1	1	2.79E-01	0.68	1.0	0.34	0.83	10	22	0.0020	0.16	0.0041	0.98	0.014
Copper, Total	4.E-02	3.E-02	11	14.3	3.94E-01	1	11	3.94E-01	0.86	1.0	0.34	0.74	1.0	49	0.0020	0.25	0.0053	0.98	0.013
tron	NB	NB	NA	NA .	7.18E+01	11	1	7.18E+01	L	1.0	0.34	0	1.0	34000	0.0020	0.95	3.9	0.98	0.053
Lead, Total	3.E-02	3.E-03	5.8	58	1.83E-01	1	1	1.83E-01	0.23	1.0	0.34	0.43	_10	48	0.0020	0.52	0.0083	0.98	0.044
Manganese	5.E-02	1.E-02	64	206	3.08E+00	1	<u> </u> 1	3.08E+00		10	0.34	0	1.0	1213	0.0020	0.79	0.67	0.98	0.21
Mercury	1.E-02	2 E-03	0.023	0.12	2.47E-04	1	11	2.47E-04		1.0	0.34	0	1.0	0.12	0.0020	10		0.98	0
Molybdenum	5.E-02	5.E-03	0.1	1	5.11E-03	11	1	5.11E-03	L	1.0	0.34	0	1.0	0.80	0.0020	0.23	0.0040	0.98	0.77
Nickel, Total	4.E-03	2.E-03	29	58	1.06E-01	1	1	1.06E-01		1.0	0.34	0	1.0	47	0 0020	0.89	0.012	0.98	0.11
Silver	5.E-04	5.E-05	15.9	161	7.39E-03	1	11_	7.39E-03	0.015	10	0.34	0.69	1.0	1,1	0.0020	0.31		0.98	0
Zinc, Total	5.E-02	2.E-02	116	232	5.74E+00	1	1	5.74E+00	15	1.0	0.34	0.89	1.0	310	0.0020	0.11	0.031	0.98	0.0052
Total PCBs	2.E-04	1.E-04	0.132	0.26	3.20E-05	1	11	3.20E-05	i	1.0	0.34	0	1.0	0.016	0.0020	0		0.98	0
Total DDT	3.E-05	6.E-06	0.6	3	1.81E-05	1	1	1.81E-05		1.0	0.34	0	1.0	0.0091	0.0020	1.0		0.98	0
Aldrin	6.E-05	1.E-05	0.14	0.72	8.80E-06	1	1	8.80E-06		1.0	0.34	0	1.0	0.0044	0 0020	0		0.98	0
Alpha Chlordane	2.E-06	9.E-07	1.8	3.6	3.25E-06	1	1	3.25E-06		1.0	0.34	0	1.0	0 0016	0.0020	1.0	1	0.98	0
delta-BHC	4.E-04	4.E-05	0.013	0.13	4.76E-08	1	1	4.76E-06		1.0	0.34	0	1.0	0.0013	0.0020	0.55	2.2E-06	0.98	0.45
Dieldrin	5.E-04	5.E-05	0.014	0.14	7.49E-06	1	1	7.49E-06		10	0.34	0	1.0	0.0033	0.0020	0.87	0.0000010	0.98	0.13
Endosulfan I	7.E-05	NB	0.11	NA.	8.15E-06	1	1	8.15E-06	<u> </u>	1.0	0.34	0	1.0	0.0029	0.0020	0.71	2.4E-06	0.98	0.29
Endosulfan II	2.E-04	NB	0.11	NA .	1.70E-05	1	1	1.70E-05	1	1.0	0.34	0	1.0	0.0085	0.0020	0		0.98	0
Endosulfan sulfate	1.E-04	NB	0.11	NA	1.64E-05	1	1	1.64E-05		1.0	0.34	0	1.0	0.0066	0.0020	0.81	3.2E-06	0.98	0.19
Endrin aldehyde	2.E-04	2.E-05	0.036	0.36	6.34E-06	1	1	6.34E-06	t	1.0	0.34	0	1.0	0 0016	0.0020	0.51	3.2E-08	0.98	0.49
Endrin ketone	4.E-04	4.E-05	0.038	0.36	1.55E-05	1	1	1.55E-05	l	1.0	0.34	0	1.0	0.0064	0.0020	0.83	2.7E-06	0.98	0.17
Gamma Chlordane	3.E-06	2.E-06	1.8	3.6	5.63E-06	1	1	5.63E-06	 	1.0	0.34	0	1.0	0.0028	0.0020	1		0.98	0
gamma-BHC (Lindane)	2.E-06	2.E-07	5.8	58	1.34E-05	1	1 - 1 -	1.34E-05	1	1.0	0.34	0	1.0	0.0048	0.0020	0.72	3.8E-06	0.98	0.28
Heotachior	8.E-03	8 E-04	0.094	0.94	7.93E-04	1	1	7.93E-04	0.0023	1.0	0.34	0.99	1.0	0.0044	0.0020	0.011	2.6E-06	0.98	0.0032
Heptachior epoxide	1.E-04	1.E-05	0.094	0.94	1.06E-05		1 - 1 -	1.06E-05	1	1.0	0.34	0	1.0	0.0048	0.0020	0.91	9.6E-07	0.98	0.09
Methoxychior	7.E-04	3.E-04	2.9	5.8	1.92E-03		 	1.92E-03	0.0054	10	0.34	0.95	1.0	0.044	0.0020	0.046		0.98	0
	5.E-03	5.E-04	7 17	71.7	3.43E-02	,	1 1	3.43E-02	0.099	1.0	0.34	0.99	1.0	0.24	0.0020	0.014	t	0.98	0
bis(2-ethylhexyl)phthalat		7.E-07	215	718	4.80E-04	l 'i -	 	4.80E-04	0.000	10	0.34	0.55	1.0	0.24	0.0020	0.014		0.98	0
Di-n-butylphthalate	2.E-06	NB	1795	NA NA	2.61E-02	l	1	2.61E-02	0.075	1.0	0.34	0.98	1.0	0.24	0.0020	0.018	 	0.98	1 0
Diethylphthalate	1.E-05				4.80E-04	I;	 	4.80E-04	1-0.073	1.0	0.34	0.80	1.0	0.24	0.0020	0.010	 -	0.98	1-6
Acenaphthylene	NB	NB NB	NA 100	- NA -	4.80E-04	 	 	4.80E-04	 	1.0	0.34	0	1.0	0.24	0.0020	0	1	0.98	- 0
Fluoranthene	2.E-06	NB	196	NA		 	 		 	1.0	0.34	 	1.0	0.24	0.0020	0		0.98	1 0
Benzo(b)fluoranthene	NB	NB	NA .	NA.	4.80E-04		 	4.80E-04	 	1.0	0.34	0	1.0	0.24	0.0020	- 0	I	0.98	- 6
Benzo(k)fluoranthene	NB	NB	NA	NA	4.80E-04	<u> </u>	 	4.80E-04	{				1.0	0.24		0-	 _	0.98	1 0
Benzo(a)pyrene	6.E-04	6.E-05	0.39	3.9	2.53E-04		 1	2.53E-04	 	1.0	0.34	0			0.0020		 -		
Indeno(1,2,3-c-d)pyrene	NB	NB	NA .	NA	4.80E-04		1	4.80E-04		1.0	0.34	0	1.0	0.24	0.0020	0	├	89.0	0
Dibenz(a,h)anthracene	NB	NB	NA .	NA	2.53E-04	11	1 1	2.53E-04	<u> </u>	1.0	0.34	0	1.0	0.13	0.0020	0	I	89.0	
Dioxin - TEQ	1.E-01	1.E-02	7.2E-07	0.0000072	7.26E-08	11	111	7.26E-08	8.3E-08	1.0	0.34	0.39	1.0	2.2E-05	0.0020	0.60	7.0E-10	0.98	0.0094

Notes:

NA=Not available/applicable NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Site area is larger than foraging area therefore a site area to forage area ratio of 1 is applied to the exposure dose Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + ISediment Dose] + IDrinking Water Dose]
Toxicological Benchmark

Food and Water Ingestion Rate (EPA 1993).

Appendix F Food Chain Model For Muskrats Ingesting Clams in the Borrow Pit Lake-Maximum Concentrations Sauget Area I

				LOAEL	-	=													
!	NOAEL	LOAEL	NOAEL	Benchmark	Forage Area Normalized		Site Area to	_	Total Conc.	Foo		T=			ediment	-		Water	r= · · · ·
			Benchmark	Dose		Time on		Exposure			Ingestion		ļ	Conc	Dry Sediment		Conc.	Ingestion	Proportion
	Hazard	Hazard	Dose		Exposure Dose	_ Site	Forage Area	Dose	In Food	Clam	Rate	of_		in Sediment	Ing. Rate	of	in Water	Rate	of
Compound	index	Index	mg/kg/d	mg/kg/d	mg/kg/day		Ratio	mg/kg/day	mg/kg wet	In Diet	kg/kg/day	-	RAF	mg/kg dry	kg/kg/day	Dose	mg/l	l/kg/day	Dose
2,4-D	3.E-05	6.E-06	0.72	3.6	2.20E-05		<u> </u>	2.20E-05		1.0	0.34	0	1.0	0.011	0.0020	1.0		0.98	0
Dicamba	0.E+00	0.E+00	0.3	1 '	0.00E+00	11	1	0.00E+00		1.0	0.34	0	1.0	0	0.0020	0		0.98	_ 0
Dichloroprop	NB	NB	NA _	NA	1.09E-02	1	11	1.09E-02	0.032	1.0	0.34	1.0	1.0	0	0 0020	0		0.98	0
MCPA	0.E+00	0.E+00	5.4	16	0.00E+00	1	11	0.00E+00	l	1.0	0.34	0	1.0	0	0.0020	0		0.98	0
MCPP	8.E-01	2.E-01	2.2	6.5	1 38E+00	1	11	1.36E+00	4	1.0	0.34	1.0	1.0	0	0.0020	0		0.98	0
Aluminum, Total	5.E+01	5.E+00	0.756	7.56	3.98E+01	1	. 1	3.98E+01	13	1.0	0 34	0.11	10	16000	0.0020	0 80	3.4	0.98	0.084
Antimony	9.E-02	9.E-03	0.049	0.49	4.40E-03	1	1	4.40E-03		1.0	0.34	0	1.0	2.2	0.0020	1.0		0.98	0
Arsenic, Total	_2.E-01	NB	1.8	ŅA	3.75E-01	1	1	3 75E-01	0 96	1.0	0.34	0.87	1.0	17	0.0020	0.09	0.015	0.98	0.039
Barium, Total	1.E-01	8.E-02	10.5	15.1	1.15E+00	1	11	1.15E+00		1.0	0.34	0	10	420	0 0020	0.73	0.32	0.98	0 27
Cadmium, Total	7.E-02	7.E-03	0.7	7	4.62E-02	1	1	4.62E-02	0.12	1.0	0.34	0.88	1.0	2.7	0.0020	0.12		0.98	0
Chromium, Total	2.E-04	NB	1982	NA	4.30E-01	1	1	4.30E-01	1.1	1.0	0.34	0.87	1.0	26	0.0020	0.12	0.0041	0.98	0.0093
Copper, Total	4.E-02	3.E-02	11	14.3	4.72E-01	1	1	4.72E-01	0.99	1.0	0.34	0.71	1.0	64	0 0020	0.27	0.0074	0.98	0.015
Iron	NB	NB	NA	NA	8.45E+01	1	1	8.45E+01		1.0	0.34	0	1.0	38000	0.0020	0.90	8.7	0.98	0.10
Lead, Total	4.E-02	4.E-03	5.8	58	2.21E-01	1	1	2.21E-01	0.25	1.0	0.34	0.39	1.0	58	0.0020	0.53	0.020	0.98	0.089
Manganese	7.E-02	2.E-02	64	206	4.47E+00	1	1	4.47E+00		1.0	0.34	0	1.0	1400	0.0020	0.63	1.7	0.98	0.37
Mercury	1.E-02	3.E-03	0.023	0.12	3.20E-04	1	1	3.20E-04		1,0	0.34	0	1.0	0.16	0.0020	1.0	l	0.98	0
Molybdenum	6.E-02	6.E-03	0.1	1	5.78E-03	1	1	5.76E-03		1.0	0.34	0	1.0	0.92	0.0020	0.32	0.0040	0.98	0.68
Nickel, Total	4.E-03	2.E-03	29	58	1.23E-01	1	1	1.23E-01		1.0	0.34	0	1.0	54	0.0020	0.88	0.015	0.98	0.12
Silver	4.E-04	4.E-05	15.9	161	6.68E-03	1	1	6.68E-03	0.015	1.0	0.34	0.76	1.0	0,79	0.0020	0.24		0.98	0
Zinc, Total	7.E-02	4.E-02	116	232	8.27E+00	1	1	8.27E+00	22	1.0	0.34	0.90	1.0	370	0.0020	0.09	0.048	0.98	0.0057
Total PCBs	0.E+00	0.E+00	0.132	0.26	0.00E+00	1	1	0.00E+00		1.0	0.34	0	1.0	0.000	0.0020	0		0.98	Ö
Total DOT	7.E-05	1.E-05	0.6	3	4.40E-05	1	1	4.40E-05		1.0	0.34	0	1.0	0.022	0.0020	1.0E+00		0.98	0
Aldrin	0.E+00	0.E+00	0.14	0.72	0.00E+00	1	1	0.00E+00		1.0	0.34	0	1.0	0.0000	0.0020	0		0.98	0
Alpha Chlordane	4.E-06	2.E-06	1.8	3.6	6.40E-06	1	i	6.40E-06		1.0	0.34	0	1.0	0.0032	0.0020	1		0.98	0
delta-BHC	2.E-04	2.E-05	0.013	0.13	2.16E-06	1	1	2.16E-06		1.0	0.34	0	1.0	0.0000	0.0020	0	2.2E-06	0.98	1.0
Dieldrin	1.E-04	1.E-05	0.014	0.14	1.98E-06	1	1	1.98E-06		1.0	0.34	0	1.0	0.00050	0.0020	0.51	1.0E-06	0.98	0.49
Endosulfan I	1.E-04	NB	0.11	NA.	1.22E-05	1	1	1.22E-05		1.0	0.34	0	1.0	0.0049	0.0020	0.81	2.4E-06	0.98	0.19
Endosulfan II	0.E+00	NB	0.11	NA.	0.00E+00	1	1	0 00E+00		1.0	0.34	0	1.0	0.0000	0.0020	0		0.98	0
Endosulfan sulfate	2.E-04	NB	0.11	NA.	2.21E-05	1	1	2.21E-05		1.0	0.34	0	1.0	0.0095	0.0020	0.86	3.2E-06	0.98	0.14
Endrin aldehyde	2.E-04	2.E-05	0.036	0.36	7.54E-06	1	1	7.54E-06		1.0	0 34	0	1.0	0.0022	0.0020	0.58	3.2E-06	0.98	0.42
Endrin ketone	1.E-04	1.E-05	0.038	0.36	4.09E-06	1	1	4.09E-06		1.0	0.34	0	1.0	0.00072	0.0020	0.35	2 7E-06	0.98	0.65
Gamma Chlordane	3.E-06	2 E-06	1.8	3.6	6.00E-06	1	1	6.00E-06	1	1.0	0.34	0	1.0	0.0030	0 0020	1.0		0.98	0
gamma-BHC (Lindane)	2.E-06	2.E-07	5.8	58	1.33E-05	- ,	1 1	1 33E-05	1	1.0	0.34	0	1.0	0.0048	0.0020	0.72	3 8E-06	0.98	0.28
Heptachlor	8.E-03	8 E-04	0.094	0.94	7.85E-04	1	1 1	7.85E-04	0.0023	1.0	0.34	1.0	1.0	0 0000	0.0020	0	2.9E-08	0.98	0 0036
Heptachlor epoxide	1.E-04	1.E-05	0.094	0.94	1.05E-05	1	1 1- -	1.05E-05		1.0	0.34	0	1.0	0.0048	0 0020	0.91	9.6E-07	0.98	0.089
Methoxychlor	6 E-04	3.E-04	2.9	5.8	1.84E-03	 	 	1.84E-03	0 0054	1.0	0.34	1.0	1.0	0.0000	0.0020	0		0.98	0
	8.E-03	8.E-04	7.17	71.7	5.78E-02	 	1 i	5.78E-02	0.17	1.0	0.34	1.0	1.0	0	0.0020	0		0.98	0
bis(2-ethylhexyl)phthalat	0.E+00	0.E+00	215	718	0.00E+00	1	1	0.00E+00		1.0	0.34	0	1.0	0	0.0020	0		0.98	0
Di-n-butylphthalate	2.E-05	NB	1795	NA NA	4.08E-02	1	 	4.08E-02	0.12	1.0	0.34	1.0	1.0	0	0.0020	0		0.98	0
Diethylphthalate	NB	NB -	NA NA	NA NA	0.00E+00	1	1	0.00E+00	 	1.0	0.34	0	1.0	0	0.0020	0		0.98	0
Acenaphthylene	0.E+00	NB NB	196	NA NA	0.00E+00	-	 	0.00E+00	ļ	1.0	0.34	0	1.0	0	0.0020	0	-	0.98	0
Fluoranthene		NB NB	NA 190	NA NA	0.00E+00	f '	1-1	0.00E+00	f	1.0	0.34	0	1.0	0	0.0020	0	 	0.98	0
Benzo(b)fluoranthene	NB NB	NB NB	NA	- NA	0.00E+00	l	 	0.00E+00	 	1.0	0.34	Ö	1.0	- 0	0.0020	0		0.98	0
Benzo(k)fluoranthene	NB 0.5.00		0.39	3.9	0.00E+00	 	 	0.00E+00	 -	1.0	0.34	0	1.0	<u>-</u>	0.0020	0	l	0.98	0
Benzo(a)pyrene	0.E+00	0.E+00			0.00E+00	 	 	0.00E+00		1.0	0.34	0	1.0	- 6	0.0020	0		0.98	0
Indeno(1,2,3-c-d)pyrene	NB	NB NB	NA NA	NA	0.00E+00	ł	1 1	0.00E+00		1.0	0.34		1.0	0	0.0020	0		0.98	0
Dibenz(a,h)anthracene	NB	NB	NA 7 005 07	NA 7 20E 08	1.17E-07	 	l -	1.17E-07	1.5E-07	1.0	0.34	0.42	1.0	3.3E-05	0.0020	0.57	9.4E-10	0.98	0.0078
Dioxin - TEQ	2.E-01	2.E-02	7.20E-07	7.20E-06	1.1/6-0/	<u> </u>		1.1/6-0/	1.3C-07	1.0	0.34	, 0.72	10	3.35-00_	0.0020	0.07	3.42-10	0.20	0.0078

Notes:

NA=Not available/applicable

NB = Benchmark not available

Boided values indicate a Hazard Index greater than 1

Site area is larger than foraging area therefore a site area to forage area ratio of 1 is applied to the exposure dose

Food Chain Model Components:

Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Water Ingestion Rate (EPA 1993).

Appendix F River Otter Food Chain Model - Clam Ingestion - Average Concentrations - Borrow Pit Lake Sauget Area I

					Overall		Site Area				Food					ediment ¹			Water	
	NOAEL	LOAEL	NOAEL	LOAEL	Exposure	Time on	to Forage	Exposure	Total Conc.	Clam	Proportion	Incestion	Proportion		Conc	Dry Sediment	Dranation	Conc	Ingestion	Omnodion
	Hazard	Hazard	Benchmark	Benchmark	Dose	Site	Area	Dose	in Food	Concentration		Rate	ol		in Sediment		of	in Water	Rate	Proportion
Compound	lodex	Index	Dose	Dose	mg/kg/day	Ratio	Ratio	mg/kg/day	mg/kg wet	mg/kg	In Diet	kg/kg/day	Dose	RAF	ma/ka	kg/kg/day	Dose	mo/i	Vkg/day	Dose
2.4-D	9.E-08	2.E-08	0.47	2.3	4.24E-08		0.01	0	0		1.0	0.10	0.00	1.0	0.011	0.00040	1.00		0.00	0.000
Dicamba	6.E-07	2.E-07	0.19	0.63	1.13E-07		0.01	<u> </u>	 	 	1.0	0.10	0.00	1.0	0.028	0.00040	0.00		0.08	0.000
Dichiorograp	NB	NB	NA.	NA.	1.90E-05	- i	0.01	<u> </u>	0.018	0.018	1.0	0.10	0.97	10	0.14	0.00040	0.030		0.08	0.000
MCPA	3.E-06	1.E-06	3.5	10	1.13E-05	1	0.01		- 0.0.0	0.010	1.0	0.10	0.00	1.0	2.8	0.00040	0.00		0.08	0.000
MCPP	3.E-03	1.E-03	1.4	4.2	4.01E-03	- i -	0.01	<u> </u>	- 4	4	1.0	0.10	1.0	1.0	2.8	0.00040	0.00		0.08	0.000
Aluminum, Total	1.E-01	1.E-02	0.487	4.67	6.64E-02	1	0.01	7-	11	10.5	1.0	0.10	0.18	1.0	13667	0.00040	0.82		0.08	0.000
Antimony	3.E-04	3.E-05	0.032	0.32	8.87E-06	1	0.01	<u> </u>		1	1.0	0.10	0.00	1.0	2.2	0.00040	1.0	1.6	0.08	0.000
Arsenic, Total	9.E-04	NB	1.2	NA.	1.03E-03	1	0.01	0	0.96	0.96	1.0	0.10	0.93	1.0	16	0.00040	0.061	0.012	0.08	0.0090
Barium	2.E-04	2.E-04	6.8	9.75	1.53E-03	<u> </u>	0.01	- i-	0.00	- V. 20	1.0	0.10	0.00	1.0	350	0.00040	0.92	0.012	0.08	0.085
Cadmium, Total	3.E-04	3.E-05	0.450	4.5	1.28E-04	<u> </u>	0.01		0.12	0.12	1.0	0.10	0.93	1.0	2.1	0.00040	0.065	0.10	0.08	0.000
Chromium, Total	6.E-07	NB	1276	NA -	7.70E-04	- i -	0.01	i i	0.68	0.68	1.0	0.10	0.88	1.0	22	0.00040	0.11	0.0041	0.08	0.0043
Copper, Total	1.E-04	1.E-04	7.1	9.15	1.06E-03	1	0.01	ŏ-	0.86	0.86	1.0	0.10	0.81	1.0	49	0.00040	0.18	0.0053	0.08	0,0040
lron	NB	NB	NA NA	NA I	1.39E-01		0.01	14	1 - 0.00 -	L	1.0	0.10	0.00	1.0	34000	0.00040	0.18	3.9	0.08	0.022
Lead, Total	1.E-04	1.E-05	3.70	37	4.32E-04	- i -	0.01	0	0.23	0.23	1.0	0.10	0.54	1.0	48	0.00040	0.44	0.0083	0.08	0.022
Manganese	1.E-04	4.E-05	41.00	132	5.39E-03		0.01	-	0.25	- -	10	0.10	0.00	1.0	1213	0.00040	0.90	0.67	0.08	0.015
Mercury	3.E-05	7.E-06	0.015	0.075	4.93E-07	-	0.01	ò	<u>ò</u>		1.0	0.10	0.00	1.0	0.12	0.00040	1.0	0.07	0.08	0.000
Molybdenum	8.E-05	8.E-06	0.066	0.66	5.59E-06	<u> </u>	0.01		- 6		1.0	0.10	0.00	1.0	0.60	0.00040	0.43	0.0040	0.08	0.57
Nickel Total	1.E-05	5.E-06	19.00	37	1.99E-04	1	0.01		- 0		1.0	0.10	0.00	1.0	47	0.00040	0.95	0.0012	0.08	0.047
Silver	2.E-06	2.E-07	10.30	104	1.96E-05	1	0.01		0.015	0.015	1.0	0.10	0.77	1.0		0.00040	0.23	0.012	0.08	0.000
Zinc, Total	2.E-04	1.E-04	75.0	149	1.62E-02	i	0.01		15	15	1.0	0.10	0.92	1.0	310	0.00040	0.075	0.031	0.08	0.000
Total PCBs	8.E-07	4.E-07	0.085	0.17	6.40E-08		0.01	1 6		- '4	1.0	0.10	0.00	1.0	0.016	0.00040	0.00	0.031	0.08	0.002
Total DDT	1.E-07	2.E-08	0.4	2	3.63E-08	<u> </u>	0.01				1.0	0.10	0.00	1.0	0.0091	0.00040	1.0		0.08	0.000
Aldrin	2.E-07	4.E-08	0.093	0.47	1.76E-08	—	0.01	<u> </u>	t - š		1.0	0.10	0.00	1.0	0.0044	0.00040	0.00		0.08	0.000
Alpha Chlordane	5.E-09	3.E-09	1.2	2.3	6.51E-09	- i -	0.01				1.0	0.10	0.00	1.0	0.0016	0.00040	1.0	 	0.08	0.000
delta-BHC	8.E-07	8.E-08	0 0085	0.085	6.96E-09		0.01	- 0			1.0	0.10	0.00	10	0.0013	0.00040	0.75	2.2E-06	0.08	0.000
Dieldrin	2.E-06	2 E 07	0.009	0.09	1.38E-08		0.01	- č			1.0	0.10	0.00	1.0	0.0033	0.00040	0.94	0.0000010	0.08	0.058
Endosulfan I	2.E-07	NB	0.07	NA NA	1.35E-08	- i -	0.01				1.0	0.10	0.00	1.0	0.0039	0.00040	0.86	2.4E-06	0.08	0.14
Endosulfan II	5.E-07	NB	0.07	NA T	3.40E-08	1	0.01	- 0	1 0		1.0	0.10	0.00	1.0	0.0085	0.00040	0.00	2.46-00	0.08	0.000
Endosulfan sulfate	4.E-07	NB NB	0.07	NA	2.91E-08		0.01	- 6	l š		1.0	0.10	0.00	1.0	0.0066	0.00040	0.91	3.2E-06	0.08	0.088
	4.E-07	4.E-08	0.023	0.23	8 96E-09	- i	0.01		1 - 0		1.0	0.10	0.00	1.0	0.0016	0.00040	0.71	3.2E-06	0.08	0.29
Endrin aldehyde	1.E-06	1.E-07	0.023	0.23	2.78E-08	├ ─÷	0.01		 		1.0	0.10	0.00	1.0	0.0064	0.00040	0.92	2.7E-06	0.08	0.078
Endrin ketone			1.2	2.3	1.13E-08		0.01	<u> </u>	 		1.0	0.10	0.00	1.0	0.0028	0.00040	1.0	2.72-00	0.08	0.000
Gamma Chiordane	9.E-09 6.E-09	5.E-09 8.E-10	3.7	37	2.23E-06	├─ ┼─	0.01	-			1.0	0.10	0.00	1.0	0.0028	0.00040	0.86	3.8E-06	0.08	0.14
gamma-BHC (Lindane)	4.E-05	4.E-06	0.061	0.61	2.32E-06	 	0.01		0.0023	0.0023	1.0	0.10	0.99	1.0	0.0048	0.00040	0.008	2.6E-06	0.08	0.001
Heptachlor	3.E-07	4.E-06 3.E-08	0.061	0.61	2.00E-06	++	0.01	- ۵	0.0023	0.0023	1.0	0.10	0.00	1.0	0.0048	0.00040	0.96	9.6E-07	0.08	0.038
Heptachlor epoxide	3.E-07 3.E-06	3.E-08 2.E-06	1.9	3.7	5.58E-06	├─ ├	0.01		0.0054	0.0054	1.0	0.10	0.97	1.0	0.044	0.00040	0.032	8.0E-V/	0.08	0.000
Methoxychlor	3.E-00 NB	NB	NA NA	NA NA	9.60E-07	⊢ ; 	0.01	 	1 0 000	U.UU.4	1.0	0.10	0.00	1.0	0.24	0.00040	0.00	 	0.08	0.000
Acenaphthylene	2.E-06	2.E-07	0.25	2.5	5.07E-07		0.01		1 0	 	1.0	0.10	0.00	1.0	0.13	0.00040	0.00		0.08	0.000
Benzo(a)pyrene	NB	NB	NA NA	NA NA	9.60E-07	 	0.01	 	 	+	1.0	0.10	0.00	1.0	0.13	0.00040	0.00	+	0.08	0.000
Benzo(b)fluoranthene	NB	NB NB	NA NA	NA T	9.60E-07		0.01	 -	 	 	1.0	0.10	0.00	1.0	0.24	0.00040	0.00	 	0.08	0.000
Benzo(k)fluoranthene	2.E-05	2.E-06	4.62	46.2	1.00E-04	├ ÷	0.01		0.099	0.099	1.0	0.10	0.99	1.0	0.24	0.00040	0.010		0.08	0.000
Bis(2-ethyhexyl)phthalate	7.E-09	2.E-09	139	463	9.60E-07		0.01	ö	0.000		1.0	0.10	0.00	1.0	0.24	0.00040	0.00		0.08	0.000
Di-n-butytphthalate			NA NA	NA	5.07E-07	 	0.01			 -	1.0	0.10	0.00	1.0	0.13	0.00040	0.00	 	0.08	0.000
Dibenzo(a,h)anthracene	NB 7.E-08	NB NB	1156	NA NA	7.63E-05	 	0.01		0.075	0.075	1.0	0.10	0.99	1.0	0.13	0.00040	0.013	 	0.08	0.000
Diethylphthalate			126	NA	9.60E-07	- ; -	0.01	 	0.075	0.07.5	1.0	0.10	0.00	1.0	0.24	0.00040	0.00	 	0.08	0.000
Fluoranthene	8.E-09 NB	NB NB	NA NA	NA NA	9.60E-07	 - ; -	0.01		- 0	 	1.0	0.10	0.00	1.0	0.24	0.00040	0.00	t	0.08	0.000
Indeno(1,2,3-c,d)pyrene	4.E-04	4.E-05	4.8835E-07		1.71E-10	 	0.01	0	8.3E-08	8.3E-08	1.0	0.10	0.49	1.0	2.2E-05	0.00040	0.51	6.96E-10	0.08	0.003
Dioxin	4.E-U4	4.6-05	4.0033E-07	4.003E-00	1.7 (6-10	<u> </u>	V.01		0.3E-00	U.JE-00	1.0	3.10	U.48	1.0	4.4E-03	0.0000	7.51	0.00E-10	0.00	0.000

Notes: NA=Not available/applicable NB = Benchmark not available

Boided values indicate a Hazard Index greater than 1 Half the detection limit is used for compounds that were not detected.

Food Chain Model Components:

Hazard Index Estimate * [Food Dose] + [Sediment Dose] + [Drinking Water Dose]

Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the sediment component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisturs=80%; plant moisture=70%) and then calculate a sediment ingestion rate from the sediment proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Appendix F River Otter Food Chain Model -Clam Ingestion - Maximum Concentrations - Borrow Pit Lake Sauget Area I

NOAEL				Overall		Site Area				Food				34	ediment'			Water	
	LOAEL	NOAEL	LOAEL	Exposure	Time on	to Forage	Exposure	Total Conc.	Clam	Proportion	ingestion	Proportion		Conc.	Dry Sediment	Proportion	Conc.	Ingestion	Proportion
Hazard	Hazard	Benchmark	Benchmark	Dose	Site	Area	Dose	in Food	Concentration	Clams	Rate	of		in Sediment		of	in Water	Rate	of
Index	Index	Dose	Dose	mg/kg	Ratio	Ratio	mg/kg/day	mg/kg wet	mg/kg	In Diet	kg/kg/day	Dose	RAF			Dose			Dose
9.E-06	2.E-06	0.47	2.3	4.40E-06	1	1	4.40E-06			1.0		0.00	1.0				———		0.000
0.E+00	0.E+00	0 19	0.63	0.00E+00	1	1	0.00E+00			1.0	0.10				0.00040	0.00	—		0 000
NB	NB	NA NA	NA	3 20E-03	1	1	3 20E-03	0.032			0.10					<u> </u>			0.000
0.E+00	0.E+00	3.5	10	D.00E+00		1	D.00E+00	1		1.0	0.10						 		0.000
3 E-01	1.E-01	1.4	4.2	4.00E-01	1	1	4.00E-01	4		1.0	0.10	1.0		0			 		0.000
2.E+01	2.E+00	0.487	4.87	7.97E+00	1	1	7.97E+00	13		1.0	0.10	0 16		18000			3.4		0.034
3.E-02	3.E-03	0.032	0.32	8 80E-04	1	1	8.80E-04	1		1.0	0.10	0.00			0.00040		<u> </u>		0.000
9 E-02	NB	1.2	. NA	1.04E-01	1	1	1.04E-01	0.96		1.0	0.10	0.92	1.0		0 00040	0.065	0.015		0 012
3.E-02	2.E-02	6.8	9.75	1.94E-01	1	1	1.94E-01			1.0	0.10	0.00	1.0	420	0.00040	0.87	0.32	0.08	0.132
3.E-02	3.E-03	0.450	4.5	1 31E-02	1	1	1.31E-02	0.12		1.0	0.10	0.92	1.0	2.7	0.00040	0.083	1	0.08	0.000
9.E-05	NB	1276	NA	1.21E-01	1	1	1.21E-01	1.1		1.0	0.10	0.91	1.0	26	0.00040	0.086	0.0041	0.08	0.0027
2.E-02	1.E-02	7.1	9.18	1.25E-01	1	1	1 25E-01	0.99		1.0	0.10	0.79	1.0	64	0.00040	0.20	0.0074	0.08	0.0047
NB	NB	NA	NA	1.59E+01	- 1	1	1.59E+01			1.0	0.10	0.00	1.0	38000	0.00040	0.96		0.08	0.044
1.E-02	1.E-03	3.70	37	4.98E-02	1	1	4.98E-02	0.25		1.0	0.10	0.50	1.0	58	0.00040	0.47		0.08	0.032
2.E-02	5.E-03	41.00	132	6.96E-01	1	1	6.96E-01		T	1.0	0.10	0.00	1.0	1400	0.00040	0.80	1.7		0.195
4.E-03	9.E-04	0.015	0.075	6.40E-05	1	1	6.40E-05			1.0	0.10	0.00	1.0	0.16	0.00040	1.0	1	0.08	0.000
1.E-02	1.E-03	0.066	0.66	6.68E-04	1	1	6.88E-04	1		1.0	0.10	0.00	1.0	0.92	0.00040	0.53	0.0040	0.08	0.465
1.E-03	6.E-04	19.00	37	2.28E-02	1	1	2.28E-02		T	1.0	0.10	0.00	1.0	54	0.00040	0.95	0.015	0.08	0.053
2.E-04	2.E-05	10.30	104	1.82E-03	1	1	1.62E-03	0.015		1.0	0.10	0.83	1.0	0.79	0.00040	0.17	1	0.08	0.000
3.E-02	2.E-02	75.0	149	2.35E+00	1	1	2.35E+00	22		1.0	0.10	0.94	1.0	370	0.00040	0.063	0.048	0.08	0.002
0.E+00	0.E+00	0.085	0.17	0.00E+00	1	1	0.00E+00			1.0	0.10	0.00	1.0	0	0.00040	0.00		0.08	0.000
2.E-05	4.E-06	0.4	2	8.80E-06	1	1	8.80E-06	1	1	1.0	0.10	0.00	1.0	0.022	0.00040	1.0	 	0.08	0.000
0.E+00	0.E+00	0.093	0.47	0.00E+00	1	1	0.00E+00			1.0	0.10	0.00	1.0	0	0.00040	0.00		0.08	0.000
	6.E-07	1.2	2.3	1.28E-06	1	1	1.28E-06		i	1.0	0.10	0.00	1.0		0.00040	1.0	1		0.000
	2 E-08	0.0085	0.065	1.76E-07	1	1	1.76E-07			1.0	0.10	0.00	1.0	0	0.00040	0.00	2.2E-06		1.0
3.E-05	3.E-06	0.009	0.09	2.80E-07	1	1	2.80E-07			1.0	0.10	0.00	1.0	0.00050	0.00040	0.71	0.000001	0.08	0.29
3.E-05	NB	0.07	NA	2.15E-08	1	1	2.15E-06			1.0	0.10	0.00	1.0	0.0049	0.00040	0.91	2.4E-06	0.08	0.089
0.E+00	NB	0.07	NA.	0.00E+00	1	1	0.00E+00			1.0	0.10	0.00	1.0	0	0.00040	0.00		0.08	0.000
6.E-05	NB	0.07	NA.	4.06E-08	1	1	4.06E-06			1.0	0.10	0.00	1.0	0.0095	0.00040	0.94	3.2E-06	0.08	0.063
	5.E-06	0.023	0.23	1.14E-06	1	1	1.14E-06		1	1.0	0.10	0.00	1.0	0.0022	0.00040	0.77	3.2E-06	0.08	0.23
2 E-05	2.E-06	0.023	0.23	5.04E-07	1	1	5.04E-07			1.0	0.10	0.00	1.0	0.00072	0.00040	0.57	2.7E-06	0.06	0.43
1.E-06	5.E-07	1.2	2.3	1,20E-06	1	1	1.20E-06			1.0	0.10	0.00	1.0	0.0030	0.00040	1.0		0.08	0.000
	6 E-08	3.7	37	2.22E-06	1	1	2.22E-06			1.0	0.10	0.00	1.0	0.0048	0.00040	0.86	3.8E-06	0.08	0.14
		0.061	0.61	2.30E-04	1	1	2.30E-04	0.0023		1.0	0.10	1.0	1.0	0	0.00040	0.00	2.9E-06	0.08	0.0010
3.E-05	3.E-06	0 061	0.61	2.00E-06	1	1	2.00E-06			1.0	0 10	0.00	1.0	0 0048	0.00040	0.96	9 6E-07	0.08	0.038
		1.9	37	5.40E-04	1	1	5.40E-04	0.0054	T	1.0	0.10	1.0	1.0	G	0.00040	0.00	I	0.08	0.000
		NA.	NA NA	0.00E+00	1	1	0.00E+00	1		1.0	0.10	0.00	10	0.0000	0.00040	0.00	I	0.08	0.000
		0.25	2.5	0.00E+00	1	1 1	0.00E+00	1	1	1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
		NA.	NA .	0.00E+00	1	1	0.00E+00	1	1	1.0	0.10	0 00	1.0	0.0000	0.00040	0.00	I	0.08	0.000
	NB -	NA NA	NA	0.00E+00	1	1	0.00E+00	1		1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
		4.62	46.2	1.70E-02	1	1	1.70E-02	0.17		1.0	0.10	1.0	10	0.0000	0.00040	0 00		0.08	0.000
		139	463	0.00E+00	1	1	0.00E+00	1		1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
		NA NA	NA NA	0.00E+00	-	1	0.00E+00	t	 	1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
			NA.		1	1	1.20E-02	0.12	 	1.0	0.10	1.0	1.0	0.0000	0.00040	0.00	Ι	0.08	0.000
					1	1	0.00E+00	1		1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
					1	1	0.00E+00		<u> </u>	1.0	0.10	0.00	1.0	0.0000	0.00040	0.00		0.08	0.000
					- -	1	2.80E-08	1.5E-07	1	1.0	0.10	0 52	1.0	3.3E-05	0.00040	0.48	9.4E-10	0.08	0 0027
	9 E-06 0 E+06 NB 0 E+06 2 E+01 2 E+01 2 E+01 2 E-02 3 E-02 9 E-05 2 E-05 2 E-05 4 E-03 1 E-03 4 E-03 1 E-03 2 E-06 4 E-03 1 E-03 2 E-06 0 E-05 2 E-06 0 E-05	9 E-06	9 E-06 2 E-06 0.47 0.E+00 0.E+00 0.19 NB NB NB NA 0.E+00 0.E+00 3.5 3 E-01 1.E-01 1.4 2.E+01 2.E+00 0.487 3.E-02 NB 1.2 3.E-02 0.E+00 0.35 3.E-02 NB 1.2 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.8 3.E-02 0.E-02 0.0 3.E-03 0.E-03 0.0 3.E-02 1.E-02 7.1 NB NB NB NA 1.E-02 1.E-03 41.00 4.E-03 9.E-04 0.015 1.E-02 1.E-03 0.066 3.E-04 19.00 3.E-02 1.E-02 75.0 0.E-04 0.015 1.E-03 0.E-04 19.00 3.E-02 2.E-05 10.30 3.E-02 2.E-05 10.30 3.E-02 2.E-05 0.066 0.E-00 0.E-00 0.085 3.E-05 0.E-06 0.0085 3.E-05 0.E-06 0.0093 3.E-05 0.E-06 0.0093 3.E-05 0.E-06 0.0093 3.E-05 0.E-06 0.0093 3.E-06 0.E-07 1.2 4.E-03 NB 0.07 5.E-05 S.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 2.E-05 1.E-06 0.023 3.E-06 1.E-07 1.2 6.E-07	9.E-06	SE-06	9.E-06	9.E-06	9.E06	9.E06	9.E-06	SE-08 2.E-08 0.47 2.3 4.06-08 1 1 4.06-09 1.0	9 E-06	98-06 28-06 0-47 2.3 4-46-66 1 1 4-406-66	SE-06 2E-06 0.47 2.3	SE-508 2E-508 0.47 2.3 4.40E-68 1	BE-00 2 E-00 0.47 23	BE-00 2E-00 0.47 2.3	Section 15 cm 10	E-00 2.E-00 1.E-00 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0

NA=Not available/applicable

NB = Benchmark not available

NO = Denormank not available
Bolded values indicate a Hazard Index greater than 1
Half the detection limit is used for compounds that were not detected.

Food Chain Model Components:
Hazard Index Estimate = |Food Dose| + |Sediment Dose| + |Drinking Water Dose|
Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the sediment component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%; plant moisture=70%) and then calculate a sediment ingestion rate from the sediment proportion in the dief (dry weight) estimated in Beyer et al. (1994)

Appendix F River Otter Food Chain Model - Fish Ingestion - Average Concentrations - Borrow Pit Lake Sauget Area I

NOAEL LOAE	rd Benchmark Dose 188 0.47 Dose 189 0.47 NA NA 122 0.487 1276 MA 7.1 1276 MA 1	LOAEL Benchmark Dose 2.3 0.63 NA 10 4.2 4.87 0.32 NA 9.75 4.5	Overall Exposure Dose mg/kg 4.24E-08 5.87E-08 7.19E-08 1.61E-03 1 13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	Ratio of Forage Area to Site 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Time on Site Ratio 1 1 1 1 1 1 1	Exposure Dose mg/kg/day 0 0 0 0 0 8	Total Conc. in Food mg/kg wet 0 0.0058 0.0066 1.6 0	Large Fish Concentration mg/kg 0.0070 0.0068 1.1	Proportion Large Fish in Diet 0.72 0.72 0.72	Food Forager Concentration mg/kg 0.0026 0.0067	Proportion Forager in Diet 0.28 0.28	Rate kg/kg/day 0.10 0.10	Proportion of Dose 0.00 0.98	RAF 1.0 1.0	Conc. In Sediment rng/kg 0.011	diment ¹ Dry Sediment ing. Rate kg/kg/day 0.00040	Proportion of Dose 1.00	Conc. in Water mg/i	Water Ingestion Rate Ukg/day 0.08	Proportion of Dose
Compound Compound	rd Benchmark Dose 188 0.47 Dose 189 0.47 NA NA 122 0.487 1276 MA 7.1 1276 MA 1	Benchmark Dose 2.3 0.63 NA 10 4.2 4.87 0.32 NA 9.75 4.5 NA	Dose mg/kg 4.24E-08 5.87E-06 1.61E-03 1.13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	Forage Area to Site 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Site Ratio 1 1 1 1	Dose mg/kg/day 0 0 0 0 0 0 8	in Food mg/kg wet 0 0.0058 0.0066 1.6	Concentration mg/kg 0.0070 0.0066	Large Fish In Diet 0.72 0.72 0.72	Concentration mg/kg 0.0026	Forager in Diet 0.28 0.28	Rate kg/kg/day 0.10	Of Dose 0.00	1.0	in Sediment mg/kg 0.011	ing Rate kg/kg/day 0.00040	of Dose	in Water	Rate Vkg/day	of
Compound Index I	100 0.47 100 0.19 100 0.19 100 0.19 100 0.19 100 0.19 100 0.19 100 0.487 100 0.032 100 0.032 100 0.450 100	2.3 0 63 NA 10 4.2 4.87 0.32 NA 9.75 4.5 NA 9.16	4.24E-08 5.67E-06 7.19E-06 1.61E-03 1.13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 6.40E-08	to Site 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	1 1 1 1 1	0 0 0 0	0 0.0058 0.0066 1.6 0	0.0070 0.0066	0.72 0.72 0.72 0.72	mg/kg 0.0026	0.28 0.28	kg/kg/day 0.10	Dose 0.00	1.0	mg/kg 0.011	kg/kg/day 0.00040	Dose		Vkg/day	
Dicamba 3,E-05 9,E-05 1,E-05	08 0.19 NA 3.5 18 1.4 12 0.487 155 0.032 1.2 1.2 1.4 6.8 10.450 1276 1276 14 7.1 NA 15 3.70 15 41.00	0 63 NA 10 4.2 4.87 0.32 NA 9.75 4.5 NA 9.18	5.87E-06 7.19E-06 1.61E-03 1.13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	0.01 0.01 0.01 0.01 0.01 0.01	1 1	0 0 0 0	0.0066 1.6 0	0.0066	0.72 0.72		0.28	0.10			0.011	0.00040				
Dichiorogrop NB	NA 3.5 NB 1.4 102 0.487 105 0.032 1.2 104 6.8 106 0.450 1276 141 NA 105 3.70 15 3.70 15 3.70 16 3.70 17 1 100	NA 10 4.2 4.87 0.32 NA 9.75 4.5 NA 9.18	7.19E-06 1.61E-03 1 13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	0.01 0.01 0.01 0.01 0.01 0.01	<u></u>	0 0 0 8	0.0066 1.6 0	0.0066	0.72			0.10	0.98							0 000
MCPA	M4 3.5 M6 1.4 D2 0.487 D5 0.032 1.2 M4 6.6 D6 0.450 1276 M4 7.1 NA NA D5 3 70 D5 41.00	10 4.2 4.87 0.32 NA 9.75 4.5 NA 9.18	1.61E-03 1.13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	0.01 0.01 0.01 0.01 0.01	<u></u>	0 0	1.6			0.0067					0.028	0.00040	0.019		0.08	0.000
MCPP	08 1.4 102 0.487 105 0.032 1.2 104 6.8 108 0.450 1276 104 7.1 NA 105 3.70 105 41.00	4.2 4.87 0.32 NA 9.75 4.5 NA 9.18	1 13E-05 7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-08	0.01 0.01 0.01 0.01	<u></u>	8	0	1.1	0.70		0.28	0 t0	0.92	1.0	0.14	0.00040	0.079		0.08	0.000
Aluminum, Total 2.E-01 2.E-0 2.E-0 2.E-0 2.E-0 3.E-1 3.E-1 3	022 0.487 05 0.032 1.2 04 6.8 06 0.450 1276 14 7.1 NA 05 3 70 05 41.00	4.87 0.32 NA 9.75 4.5 NA 9.18	7.87E-02 8.87E-06 7.20E-05 1.53E-03 8.40E-06	0.01 0.01 0.01	<u></u>	8			0.72	2.8	0.28	0.10	0.99	1.0	2.8	0.00040	0.0070		0.08	0.000
Antimony 3.E-04 3.E-04 Arsenic, Total 6.E-05 NB Barium 2.E-04 2.E-0 Cadmium, Total 2.E-05 2.E-0 Chromium, Total 2.E-05 2.E-0 Chromium, Total 1.E-04 1.E-0 Iron NB NB Lead, Total 1.E-04 1.E-0 Manganese 1.E-04 1.E-0 Manganese 1.E-04 4.E-0 Manganese 1.E-04 4.E-0 Manganese 1.E-04 4.E-0 Total 1.E-05 3.E-0 Molybdenum 8.E-05 8.E-0 Nickel, Total 1.E-05 3.E-0 Total DT 4.E-05 7.E-0 Total DT 4.E-05 7.E-0 Total DDT 4.E-05 7.E-0 Alpha Chlordane 3.E-04 2.E-0 Total DDT 4.E-05 7.E-0 Alpha Chlordane 3.E-06 2.E-0 Celta BHC 8.E-07 8.E-0 Dieldrin 2.E-07 8.E-0 Endosulfan II 2.E-07 NB Endosulfan II 3.E-07 NB	1.2 1.2 1.2 1.4 6.8 1.6 0.450 1.276 1.4 7.1 1.5 3.70 1.5 3.70	0.32 NA 9.75 4.5 NA 9.18	8.87E-06 7.20E-05 1.53E-03 8.40E-08	0.01 0.01	1	4	22		0.72		0.28	0 10	0.00	1.0	2.8	0.00040	0.00	-	0.08	0.000
Arsenic, Total 6 E-05 NB Barum 2 E-04 ZE-06 Cadmium, Total 2 E-05 ZE-06 Commium, Total 4 E-07 NB Copper, Total 1 E-04 IE-0 Iron NB NB NB NB NB NB NB NB NB NB NB NB NB	1.2 1.4 6.8 1.6 0.450 1.276 1.4 7.1 NA 1.5 3.70 1.5 41.00	NA 9.75 4.5 NA 9.18	7.20E-05 1.53E-03 8.40E-08	0.01		1	23	16	0.72	40	0.28	0.10	0.29	1.0	13867	0.00040	0.69	1.6	0.08	0.016
Barium 2 E-04 2.E-0 Cadmium, Total 2.E-05 2.E-0 Chromium, Total 4.E-07 NB Copper, Total 1.E-04 1.E-0 1.E-04 1.E-0 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-05 1.E-04 1.E-05 1.E	04 6.8 06 0.450 1276 04 7.1 NA 05 3.70 05 41.00	9.75 4.5 NA 9.18	1.53E-03 8.40E-08			0	0		0.72		0 28	0.10	0.00	1.0	2.2	0.00040	1.0		0.08	0.000
Cadmium, Total 2.E-05 2.	06 0.450 1276 34 7.1 NA 05 3.70 05 41.00	4.5 NA 9.18	8.40E-08	0.01	1		0		0.72		0.28	0.10	0.00	1.0	16	0.00040	0.87	0.012	0.08	0.13
Chromium, Total 4.E-07 NB Copper, Total 1.E-04 1.E-0 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-05 1.E-04 1.E-05	1276 04 7.1 NA 05 3.70 05 41.00	NA 9.18			1	0	0	1	0.72		0.28	0.10	0 00	1.0	350	0.00040	0.92	0.16	0.08	0.085
Copper, Total 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-05 1.E	NA 7.1 NA 370 05 41.00	9.18	5 55E-04	0.01	1	0	0_		0.72		0.26	0.10	0.00	1.0	2.1	0.00040	1.0		0.08	0.000
Iron	NA 05 3 70 05 41.00			0.01	11	0	0.46	0.53	0.72	0.29	0.28	0.10	0.84	1.0	22	0.00040	0.16	0 0041	0.08	0.0059
Lead, Total 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-04 1.E-05 1.E-0	05 3 70 05 41.00		9.74E-04	0.01	1	0	0.77	0.69	0.72	0.99	0.28	0.10	0.80	1.0	49	0.00040	0.20	0.0053	0.08	0.0043
Manganese	5 41.00	NA	1.39E-01	0.01	1	14	0		0.72		0.28	0.10	0.00	1.0	34000	0.00040	0.98	3.9	0.08	0.022
Mercury 9.E-03 2.E-1		37	4.69E-04	0.01	1	0	0.27	0.24	0.72	0.36	0.28	0.10	0.58	1.0	48	0.00040	0.41	0.0083	0.08	0.014
Molybdenum 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 6.E-05 7.E-05 6.E-05 7.E-05 6.E-05 7.E-05 6.E-05	12 L D D (2	132	5.39E-03	0.01	1	1_1_1	0		0.72		0.28	0.10	0.00	1.0	1213	0.00040	0.90	0.67	0.08	0.099
Nickel, Total 1.E-05 5.E-05		0.075	1.28E-04	0.01	1	0	0 13	0.086	0 72	0.23	0.28	0.10	1.0	10	0.12	0.00040	0.00		0.08	0.000
Silver 4,E-07 4,E-07 1		0.66	5.59E-06	0.01	1	0	0		0.72		0.28	0.10	0.00	1.0	0.60	0.00040	0.43	0.0040	0.08	0.57
Zinc, Total 3.E-04 2.E-1		37	1.99E-04	0.01	1_	0	0		0.72		0.28	0.10	0.00	1.0	47	0.00040	0.95	0.012	0.08	0.047
Total PCBs 1.E-03 7.E-0		104	4.59E-06	0.01	1	0			0.72		0.28	0.10	0.00	1.0	1.1	0.00040	0.00		0.08	0.000
Total DDT		149	2.28E-02	0.01	1	2	22	18	0 72	30	0.28	0.10	0,94	1.0	310	0.00040	0.054	0.031	0.08	0.0011
Aldrin 2.E-07 4.E-4 Alpha Chlordane 3.E-08 2.E-4 2.E-08 2.E-4 2.E-08 2.E-4 2.E-08 2.E-4 2.E-08 2.E-4 2.E-07 NB		0.17	1.16E-04	0.01	1	0	0.12	0.15	0.72	0.030	0.28	0.10	1.0	1.0	0.016	0.00040	0.00		0.08	0.000
Alpha Chlordane 3.E-08 2.E-0 2		2	1.37E-05	0.01	1	0	0.014	0.016	0.72	0.0077	0.28	0.10	1.0	1.0	0.0091	0.00040	0.00		0.08	0.000
delta-BHC		0.47	1.76E-08	0.01	1	0	0		0.72		0.28	0.10	0.00	1.0	0.0044	0.00040	0.00		0.08	0.000
Dietdrin 2.E-06 2.E-0 Endosulfan 2.E-07 NB Endosulfan 5.E-07 NB Endosulfan sulfate 4.E-07 NB		2.3	3.92E-06	0.01	1	0	0.0039	0.0054	0.72		0.28	0.10	1.0	1.0	0.0016	0.00040	0.00		0.08	0.000
Endosulfan I 2.E-07 NB Endosulfan II 5.E-07 NB Endosulfan sulfate 4.E-07 NB		0.085	6.96E-09	0.01	1	0	0	L	0.72		0.28	0.10	0.00	1.0	0.0013	0.00040	0.75	2 2E-06	0.08	0.25
Endosulfan II 5.E-07 NB Endosulfan sulfate 4.E-07 NB		0.09	1.38E-08	0.01_	1		0		0.72		0.28	0.10	0.00	1.0	0.0033	0.00040	0.94	0.000001	0.08	0.058
Endosulfan sulfate 4.E-07 NB		NA _	1.35E-08	0.01	1	0	0		0.72		0.28	0.10	0.00	1.0	0.0029	0.00040	0.86	2.4E-06	0.08	0.14
		NA_	3.40E-08	0.01	!		0	ļ <u>.</u>	0.72		0.28	0.10	0.00	1.0	0.0085	0 00040	0.00		0.08	0.000
		NA NA	2.91E-08	0.01	1	0	0		0.72		0 28	0.10	0.00	1.0	0.0066	0.00040	0.91	3.2E-06	0.08	0 088
		0.23	8.96E-09	0.01	1	<u>°</u>	0	}	0.72	l	0.28	0.10	0.00	1.0	0 0016	0.00040	0.71	3.2E-06	0.08	0.29
Endrin ketone 1.E-06 1.E-0		0.23	2.78E-08	0.01		0	0		0.72		0.28	0.10	0.00	1.0	0.0064	0.00040	0.92	2 7E-06	0.08	0.078
Gamma Chlordane 6 E-06 3 E-0		2.3	7.07E-06	0.01	!_		0 0071	0.0098	0.72		0.28	0.10	1.0	1.0	0.0028	0.00040	0.00	200	80.0	0.000
gamma-BHC (Lindane) 6.E-09 6.E-1		37	2.23E-08	0.01	}	0-	0 0000		0.72	<u> </u>	0.28	0 10	0.00	1.0	0.0048	0.00040	0.86	3.8E-06	0.08	0.14
Heptachior 3.E-05 3.E-0		0.61	2.04E-06	0.01			0.0020	0.0028	0.72	ļ	0.28	0.10	0.99	1.0	0.0044	0.00040 0.00040	0.0086	2.6E-06 9.6E-07	0.08	0.0010
Heptachior epoxide 3 E-07 3.E-0		0.61	2.00E-08	0.01			0	 -	0.72			+	0.00	1.0	0.0048	0.00040	0.00	9 02-U/	0.08	0.000
Methoxychlor 9.E-08 5.E-0		3.7	1.76E-07	0.01			 		0.72		0.28	0.10	0.00	1.0	0.044	0.00040	0.00		0.08	0.000
Acenaphthylene NB NB		NA.	9.60E-07 5.07E-07	0.01				·	0.72		0.28	0.10	0.00	1.0	0.13	0.00040	0.00		0.08	0.000
Benzo(a)pyrene 2 E-06 2.E-0		2.5 NA	9.60E-07	0.01	_ ;	- 0	 	 -	0.72		0.28	0.10	0.00	1.0	0.13	0.00040	0.00		0.08	0.000
Benzo(b)fluoranthene NB NB						 	 	 	0.72		0.28	0.10	0.00	1.0	0.24	0.00040	0.00		0.08	0.000
Benzo(k)fluoranthene NB NB		NA	9 60E-07	0.01		 	0.12	0.090	0.72	0.18	0.28	0.10	0.99	1.0	0.24	0.00040	0.0082		0.08	0.000
Bis(2-ethyhexyl)phthalate 3.E-05 3.E-		46.2	1.17E-04 2.40E-05	0.01	1	 	0.12	0.032	0.72	V.10	0.28	0.10	0.96	1.0	0.24	0.00040	0.0002		0.08	0.000
Di-n-butylphthalate 2.E-07 5.E-0		463	1.39E-05	0.01	 -		0.023	0.032	0.72	0.048	0.28	0.10	0.96	1.0	0.13	0.00040	0.038		0.08	0.000
Dibenzo(a,h)anthracene NB NB		NA_	2.25E-05	0.01	- + -		0.013	0.018	0.72	0.031	0.28	0.10	0.96	1.0	0.13	0.00040	0.038		0.08	0.000
Diethylphthalate 2.E-08 NB	1158	NA NA	9.60E-07	0.01		10	0.022	0.010	0.72	0.031	0.28	0.10	0.00	1.0	0.24	0.00040	0.00		0.08	0.000
Fluoranthene 8.E-09 NB	400			0.01		1	0.015	 -	0.72	0.054	0.28	0.10	0.00	1.0	0.24	0.00040	0.060		0.08	0.000
Indeno(1,2,3-c,d)pyrene NB NB		NA NA	1.61E-05 2.35E-09		- }-	 	2.3E-06	2.7E-06	0.72	1.2E-06	0.28	0.10	0.96	1.0	2.2E-05	0.00040	0.037	7.0E-10	0.08	0.000
Dioxin 5.E-03 5.E-4	NA.	4.663E-06	∠ 35E-09	0.01_		1 0	2.3E-06	2./2-05	U.72	1.4E-00	V.26	0.10	U.80	1.0	2.4E-03	0.00040	0.037	7.0C-10	0.00	0.000

Notes:

NA=Not available/applicable

NB = Benchmark not available

Boided values indicate a Hazard Index greater than 1

Half the detection limit is used for compounds that were not detected.

Food Chain Model Components:
Hazard Index Estimate = [Food Dose] + [Sediment Dose] + [Drinking Water Dose]
Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the sediment component, we convert the food ingestion rate from wei weight to dry weight (invertebrate moleture=80%; plant moisture=70%) and then calculate a sediment ingestion rate from the sediment proportion in the diet (dry weight) estimated in Beyer et al. (1994)

Appendix F River Otter Food Chain Model - Fish Ingestion - Maximum Concentrations - Borrow Pit Lake Sauget Area I

					Overall	1												diment ¹			3	
	NOAEL	LOAEL	NOAEL	LOAEL		Ratio of	Time on	Exposure	Total Conc.	Lama Finh	0	Food	B		10						Water ²	
					Exposure		Site			Large Fish	Proportion	Forager	Proportion		Proportion		Conc.	Dry Sediment		Conc.	Ingestion	Proportion
Compound	Hazard	Hazard Index	Benchmark Dose	Benchmark Dose	Dose mg/kg	Forage Area to Site	Ratio	Dose	in Food	Concentration	Large Fish		Forager in Diet	Rate	Of Dana	545	in Sediment	Ing. Rate	of	in Water	Rate	Of .
							PLEAKED.	mg/kg/day	mg/kg wet	mg/kg		mg/kg		kg/kg/day	Dose	RAF	mg/kg	kg/kg/day	Dose	mg/l	Vkg/day	Dose
2,4-D	9.E-06	2.E-06	0.47	2.3	4.40E-06	1		4 40E-06	0		0.72		0.28	0.10	0.00	1	0.011	0.0004	1.0		0.08	0.000
Dicamba	1.E-03	3.E-04	0.19	0.63	2.10E-04	!	1	2.10E-04	0.0021	0.0019	0.72	0.0026	0.28	0.10	1.0	_1_	0	0.0004	0.00		0.08	0.000
Dichloroprop	NB	NB	NA NA	NA .	6.63E-04	 		6.63E-04	0.0066	0.0086	0.72	0.0067	0.28	0.10	1.0	. 1	0	0.0004	0.00		0.08	0.000
MCPA	6 E-02	2.E-02	3.5	10	2.22E-01	1 1		2.22E-01	2.2	1.8	0 72	3.3	0.28	0.10	1.0		0	0.0004	0.00		0.08	0.000
MCPP	0.E+00	0.E+00	1.4	4.2	0.00E+00	1		0.00E+00	0		0.72		0.28	0.10	0.00		0	0.0004	0.00		0.08	0.000
Aluminum, Total	2.E+01	2.E+00	0.487	4.87	1 05E+01	!	1	1.05E+01	38	33	0.72	52	0.28	0.10	0.36	1	16000	0.0004	0.61	3.4	0.08	0.026
Antimony	3.E-02	3.E-03	0.032	0.32	8.80E-04		1	8 80E-04			0.72		0.28	0.10	0.00	1	2.2	0.0004	1.0		0.08	0.000
Arsenic, Total	7.E-03	NB	1.2	NA	8.00E-03	1		8.00E-03	0		0.72		0.28	0.10	0.00	1	17	0.0004	0.85	0.015	0 08	0.15
Barium	3 E-02_	2.E-02	6.8	9.75	1.94E-01	. 1	1	1.94E-01	0		0.72		0.28	0.10	0.00	1	420	0.0004	0.87	0.32	0.08	0.13
Cadmium, Total	2.E-03	2.E-04	0.450	4,5	1.08E-03	1	1	1.08E-03	0		0.72		0.28	0.10	0	1	2.7	0.0004	1.0		0.08	0.000
Chromium, Total	7.E-05	NB	1276	NA .	8 66E-02	1	1	8.66E-02	0.76	0.93	0.72	0.32	0.28	0.10	0.88	1	26	0.0004	0 12	0.0041	0.08	0.0038
Copper, Total	2.E-02	2.E-02	7.1	9.18	1.38E-01	1	1	1.38E-01	1.1	0.89	0.72	1.7	0.28	0.10	0.81	1	64	0.0004	0.19	0.0074	0.08	0.0043
Iron	NB	NB	NA	NA .	1.59E+01	1	1	1.59E+01	0		0.72		0.28	0 10	0.00	1	38000	0.0004	0.96	8.7	0.08	0.044
Lead, Total	2.E-02	2.E-03	3.70	37	5.93E-02	1	1	5.93E-02	0.35	0.25	0.72	0.59	0.28	0.10	0.58	1	58	0.0004	0.39	0.020	0.08	0.027
Manganese	2.E-02	5.E-03	41.00	132	6.96E-01	1	. 1	6.96E-01	0		0.72		0.28	0 10	0.00	1	1400	0.0004	0.80	1.7	0.08	0.20
Mercury	2.E+00	5.E-01	0.015	0.075	3.56E-02	1	1	3.56E-02	0.36	0.26	0.72	0.60	0.28	0.10	1.0	1	0.16	0.0004	0.0018		0.08	0.000
Molybdenum	1.E-02	1.E-03	0.066	0.66	5.88E-04	1	1	6.88E-04	0		0.72		0.28	0.10	0.00	1	0.92	0.0004	0.53	0.0040	0.08	0.47
Nickel, Total	1.E-03	6.E-04	19.00	37	2.28E-02	1	1	2.28E-02	0		0.72		0.28	0.10	0.00	1	54	0.0004	0.95	0.015	0.08	0.053
Silver	3.E-05	3.E-06	10.30	104	3.16E-04	1	1	3.16E-04	0		0.72		0.28	0.10	0.00	1	0.79	0.0004	0.00		0.08	0.000
Zinc, Total	4.E-02	2.E-02	75.0	149	2.66E+00	1	1	2.66E+00	25	22	0.72	33	0.26	0.10	0.94	1	370	0.0004	0.056	0.048	0.08	0.0014
Total PCBs	3.E-01	1.E-01	0.065	0.17	2.41E-02	1	1	2.41E-02	0.24	0.32	0.72	0.039	0.28	0.10	1.0	1	0	0.0004	0.00		0.08	0.000
Total DDT	6.E-03	1.E-03	0.4	2	2.38E-03	1	1	2.38E-03	0.024	0.029	0.72	0.010	0.28	0.10	1.0	4	0.022	0.0004	0.00		0.06	0.000
Aldrin	0.E+00	0.E+00	0.093	0.47	0.00E+00	1	1	0.00E+00	0	0.000	0.72		0.28	0.10	0.00	1	0	0.0004	0.00		0.08	0.000
Alpha Chlordane	7.E-04	4.E-04	1.2	2.3	8.65E-04	1		8.65E-04	0.0086	0.012	0.72		0.28	0.10	1.0	1	0.0032	0.0004	0.00		0.08	0.000
deta-BHC	2.E-05	2.E-06	0.0065	0.065	1.76E-07	1	1	1.76E-07	0		0.72		0.26	0.10	0.00	1	0	0.0004	0.00	2.2E-06	0.08	1.0
Dieldrin	3.E-05	3.E-06	0.009	0.09	2.80E-07	i i	i _	2.60E-07	0		0.72		0.28	0.10	0.00	1	0.0005	0.0004	0.71	0.000001	0.08	0.29
Endoeulfan I	3.E-05	NB	0.07	NA.	2.15E-06	i	1	2.15E-08	0		0.72		0.28	0.10	0.00	1	0.0049	0.0004	0.91	2.4E-06	0.08	0.069
Endosulfan II	0.E+00	NB	0.07	NA.	0.00E+00	1 1	1	0.00E+00	Ö		0.72		0.28	0.10	0.00	1	0	0.0004	0.00		0.08	0.000
Endosulfan sulfate	6.E-05	NB	0.07	NA.	4.08E-06	1	1	4.06E-08	-		0.72		0.28	0.10	0.00	1	0.0095	0.0004	0.94	3.2E-08	0.08	0.063
Endrin aldehyde	5.E-05	5.E-06	0.023	0.23	1.14E-06	 -		1.14E-06	- 6		0.72		0.28	0.10	0.00	1	0.0022	0.0004	0.77	3.2E-08	0.08	0.23
Endrin ketone	2.E-05	2.E-06	0.023	0.23	5.04E-07	1 -	1	5.04E-07			0.72		0.28	0.10	0.00	1.0	0.00072	0.00040	0.57	2.7E-08	0.08	0.43
Gamma Chlordane	1.E-03	8.E-04	1.2	2.3	1.37E-03	1 - i -	1	1.37E-03	0.014	0.019	0.72		0.28	0.10	1.0	1.0	0.0030	0.00040	0.00		0.08	0.000
gamma-BHC (Lindane)	6.E-07	6.E-08	3.7	37	2.22E-06		1	2.22E-06	0.0.7	2.310	0.72		0.28	0.10	0.00	1.0	0.0048	0 00040	0.86	3.8E-06	0.08	0.14
	3.E-03	3.E-04	0 061	0.61	2.02E-04	1		2.02E-04	0.0020	0 0028	0.72		0.28	0.10	1.0	1.0	0	0.00040	0.00	2.9E-06	0.08	0.0011
Heptachior	3.E-05	3.E-04	0.061	0.61	2.00E-06	 		2.00E-06	0.0020	1 1020	0.72		0.28	0.10	0.00	1.0	0.0048	0 00040	0.96	9.6E-07	0.08	0.038
Heptachlor epoxide	0.E+00	0 E+00	1.9	3.7	0.00E+00	 		0.00E+00	ŏ	 	0.72		0.28	0.10	0.00	1.0	0	0.00040	0.00		0.08	0.000
Methoxychlor		NB	NA NA	3.7 NA	0.00E+00	 i 		0.00E+00	- 6		0.72		0.28	0.10	0.00	1.0	Ö	0.00040	0.00		0.08	0.000
Acenaphthylene	NB 05.00		0.25	2.5	0.00E+00	 	- ;- -	0.00E+00	0		0.72		0.28	0.10	0.00	1.0	- ŏ	0.00040	0.00		0.08	0.000
Benzo(a)pyrene	0.E+00	0.E+00		NA NA	0.00E+00	{ ;		0.00E+00		·	0.72		0.28	0.10	0.00	1.0		0.00040	0.00		0.08	0.000
Benzo(b)fluoranthene	NB	NB NB	NA.	NA NA	0.00E+00	├		0.00E+00	 0	·	0.72		0.28	0.10	0.00	1.0	 0	0.00040	0.00		0.08	0.000
Benzo(k)fluoranthene	NB	NB	NA _			1-1-		1.34E-02	0 134	0.097	0.72	0.23	0.28	0.10	1.0	1.0	- 6	0.00040	0.00	H	0.08	0.000
Bis(2-ethyhexyl)phthalate	3.E-03	3.E-04	4.62	48.2	1.34E-02		1-1-	2.30E-03		0.032	0.72	0.23	0.28	0.10	1.0	1.0	Ö	0.00040	0.00		0.08	0.000
Di-n-butylphthalate	2.E-05	5.E-06	139	463	2.30E-03	 			0.023	0.032		0.048	0.28	0.10	1.0	1.0	0	0.00040	0.00		0.08	0.000
Dibenzo(a,h)anthracene	NB	NB	NA .	NA	1.34E-03	1-1-	!	1.34E-03	0.013	2010	0.72									├ ──		
Diethylphthalate	2.E-06	NB	1156	NA	2.33E-03	1 1		2.33E-03	0.023	0.018	0.72	0.037	0.28	0.10	1.0	1.0	<u>0</u>	0.00040	0.00	├	0.08	0.000
Fluoranthene	0.E+00	NB	126	NA .	0.00E+00	11		0.00E+00	0		0.72		0.28	0.10	0.0	1.0	0	0.00040	0.00		0.08	0.000
Indeno(1,2,3-c,d)pyrane	NĐ	NB	NA .	NA	1.51E-03	1		1.51E-03	0.015		0.72	0.054	0.28	0 10	1.0	1.0	0	0.00040	0.00	A 15 15	0.08	0.000
Dioxin	8.E-01	8.E-02	4.6635E-07	4.663E-06	3.94E-07	1	1	3.94E-07	3.8E-06	4.5612E-06	0.72	1.8E-06	0.28	0.10	0.97	1.0	3.3E-05	0.00040	0.034	9.4E-10	0.08	0.000

NA=Not available/applicable NB = Benchmark not available

Bolded values indicate a Hazard Index greater than 1

Half the detection limit is used for compounds that were not detected.

Food Chain Model Components:
Hazard Index Estimate = | Food Dose] + |Sediment Dose] + |Drinking Water Dose]
Toxicological Benchmark

Food and Drinking Water Ingestion Rate (EPA 1993)

**For the sediment component, we convert the food ingestion rate from wet weight to dry weight (invertebrate moisture=80%; plant moisture=70%) and then calculate a sediment ingestion rate from the sediment proportion in the diet (dry weight) estimated in Beyer at al. (1994)

Appendix F Food Chain Model For Baid Eagle Ingesting Fish - Average Concentrations - Borrow Pit Lake Sauget Area I

					Forage Area						Food	Food						
	NOAEL	LOAEL	NOAEL	LOAEL	Normalized	Ratio for	Site Area to	Exposure	Total Conc.	Fish Tissue	Proportion	Ingestion	Proportion	Conc	Water Ingestion	Proportion		
	Hazard	Hazard	Benchmark	Benchmark	Exposure Dose	Time in	Forage Area	Dose	in Food	Concentration	Fish	Rate	of	in Water	Rate	of		
Conteminant	Index	Index	Dose mg/kg/d	Dose mg/kg/d	mg/kg/day	Site Area	Ratio	mg/kg/day	mg/kg wet	mg/kg wet	In Diet	kg/kg/day	Dose	mg/l	Vkp/day	Dose		
2.4-D	Bench NA	Bench NA	NA NA	NA NA	0.00E+00	0.5	0.003	0.00E+00	0		1.0	0.12	0		0.037	0		
Dicamba	Bench NA	Bench NA	NA NA	NA	1.28E-08	0.5	0.003	8.38E-04	0.0070	0.0070	1.0	0.12	1.0		0.037			
Dichloroprop	Bench NA	Bench NA	NA NA	NA NA	1.19E-08	0.5	0,003	7.92E-04	0.0086	0.0066	1.0	0.12	1.0		0.037			
MCPA	Bench NA	Bench NA	NA .	NA .	2.04E-04	0.5	0.003	1.36E-01	1.1	1.1	10	0.12	1.0		0.037	ō		
MCPP	Bench NA	Bench NA	8	NA	0.00E+00	0.5	0.003	0.00E+00	0		1.0	0.12	0		0.037	0		
Aluminum, Total	3.E-05	Bench NA	109.7	NA .	2.97E-03	0.5	0.003	1.98E+00	16	16	1.0	0.12	0.97	1.6	0.037	0.030		
Antimony	Bench NA	Bench NA	NA	NA	0.00E+00	0.5	0.003	0.00E+00	0		1.0	0.12	0		0.037	0		
Arsenic, Total	1.E-07	5.E-08	5.14	12.84	6.46E-07	0.5	0.003	4.30E-04	0		1.0	0.12	0	0.012	0.037	1.0		
Barium, Total	4.E-07	2.E-07	20.8	41.7	8.97E-06	0.5	0.003	5.98E-03	0		1.0	0.12	0	0.16	0.037	1.0		
Cadmium, Total	0.E+00	0.E+00	1.45	20	0.00E+00	0.5	0.003	0.00E+00	0		1.0	0.12	0		0.037	0		
Chromium, Total	1.E-04	2.E-05		5	9.59E-05	0.5	0.003	8.40E-02	0.53	0.53	1.0	0.12	1.0	0.0041	0.037	0.0024		
Copper, Total	3.E-06	2.E-06	47	61.7	1.24E-04	0.5	0.003	8.30E-02	0.69	0.69	1,0	0.12	1.0	0.0063	0.037	0.0023		
lron	Bench NA	Bench NA	NA .	NA NA	2.15E-04	0.5	0.003	1.43E-01	0		1.0	0.12	0	3.9	0.037	1.0		
Lead, Total	4.E-05	4.E-06	1.13	11.3	4.32E-05	0.5	0.003	2.88E-02	0.24	0.24	1.0	0.12	0.99	0.0083	0.037	0.011		
Manganese	4.E-08	Bench NA	977	NA NA	3.70E-05	0.5	0.003	2.47E-02	0	 	1.0	0.12	0	0.67	0.037	1.0		
Mercury	2.E-03	2.E-04	0.0064	0.084	1.54E-05	0.5	0.003	1.03E-02	0.086	0.086	1.0	0.12	1.0		0.037	0		
Molybdenum	6.E-08	6.E-09	3.5	35.3	2.22E-07	0.5	0.003	1.48E-04	0	ļ	1,0	0 12	0	0.0040	0.037	1.0		
Nickel, Total	A.E09	6.E-09	77,4 NA	107	6.42E-07	0.5	0.003	4.28E-04	0		1.0	0.12	0	0.012	0.037	1.0		
Silver	Bench NA 2.E-04	Bench NA 3.E-05	14.5	NA 131	0.00E+00 3.30E-03	0.5	0.003	0.00E+00 2.20E+00	18	18	1.0	0.12	1.0	0.004	0.037	0.00052		
Zinc, Total Total PCBs	1 E-04	1.E-05	0.18	1.8	2.70E-05	0.5	0.003	1.80E-02	0.15	0.15	1.0	0.12	1.0	0.031	0.037	0.00052		
Total DOT	1.E-03	1.E-04	0.0028	0.028	2.88E-08	0.5	0.003	1.92E-03	0.15	0.016	1.0	0.12	1.0		0.037	6		
Aldrin	Bench NA	Bench NA	NA NA	NA NA	0.00E+00	0.5	0.003	0.00E+00	0.010	0.010	1.0	0.12	0		0.037	0		
Aighn Chlordane	5.E-07	9.E-08	2.14	10.7	9.78E-07	0.5	0.003	6.52E-04	0.0054	0.0054	1.0	0.12	1.0		0.037	— ŏ		
delta-BHC	2.E-10	5.E-11	0.56	2.25	1.22E-10	0.5	0.003	8.14E-08	0.000	0.000	1.0	0.12	0	0.0000022		1.0		
Dieldrin	7.E-10	Bench NA	0.077	NA NA	5.55E-11	0.5	0.003	3.70E-08			1.0	0.12	Ö	0.000001	0.037	1.0		
Endosulfan i	1.E-11	Bench NA	10	NA NA	1.33E-10	0.5	0.003	8.88E-06		· · · · · · · · · · · · · · · · · · ·	1.0	0.12	0	0.0000024		1.0		
Endosulfan II	0 E+00	Bench NA	10	NA NA	0.00E+00	0.5	0.003	0.00E+00	0		1.0	0.12	ō		0.037	0		
Endosultan sulfate	2.E-11	Bench NA	10	NA.	1.78E-10	0.5	0.003	1.18E-07	0	† ·	1.0	0.12	0	0.0000032	0.037	1.0		
Endrin aldehyde	2.E-08	2.E-09	0.01	0.1	1.78E-10	0.5	0.003	1.18E-07	0		1.0	0.12	0	0.0000032	0.037	1.0		
Endrin ketone	1.E-06	1.E-09	0.01	0.1	1.50E-10	0.5	0.003	9.99E-08	0		1.0	0.12	0	0.0000027	0.037	1.0		
Gamma Chlordane	8.E-07	2.E-07	2.14	10.7	1.76E-08	0.5	0.003	1.18E-03	0.0098	0.0098	1.0	0.12	1.0		0.037	0		
gamma-BHC (Lindans)	1.E-10	1.E-11	2	20	2.11E-10	0.5	0.003	1.41E-07	0	I	10	0.12	0	0.0000038		1.0		
Heptachior	Bench NA	Bench NA	NA NA	NA_	5.04E-07	0.5	0.003	3.36E-04	0.0028	0.0028	1.0	0.12	1.0	2.6E-06	0.037	0.00028		
Heptachlor epoxide	Bench NA	Bench NA	NA .	NA	5.33E-11	0.5	0.003	3.55E-08	0		1.0	0.12	0	9.8E-07	0.037	1.0		
Methoxychlor	Bench NA	Bench NA	NA NA	NA	0.00E+00	0.5	0.003	0.00E+00	0	L	1.0	0.12	0		0.037	0		
Total PAHs	0.E+00	0.E+00	40	400	0.00E+00	0.5	0.003	0.00E+00	0	L	1.0	0.12	0	L	0.037	0		
bis(2-ethylhexyl)phthalat	1.E-05	Bench NA	1.1	NA .	1.63E-05	0.5	0.003	1.08E-02	0.090	0.090	1.0	0.12	1.0	 	0.037	0		
Di-n-butylphthalate	5.E-05	5.E-08	0.11	1.1	5.76E-08	0.5	0.003	3.84E-03	0.032	0.032	1.0	0.12	1.0		0.037	0		
Diethylphthalate	Bench NA	Bench NA	NA .	NA NA	3.24E-06	0.5	0.003	2.16E-03	0.018	0.018	1.0	0.12	1.0	l	0.037	0		
Dioxin - TEQ	1.E-04	1.E-05	0.000014	0.00014	1.54E-09	0.5	0.003	1.02E-08	8.5E-06	8.5E-06	1.0	0.12	1.0	3.3E-10	0.037	1.2E-05		

Notes: NA = Not available/applicable Bench NA = Benchmark not available

Food Chain Model Components: Hazard Index Estimate = <u>[Food Dose] + [Sediment Dose] + [Drinking Water Dose]</u> Toxicological Benchmark

					Forage Area						Food			Water					
	NOAEL	LOAEL	NOAEL	LOAEL	Normalized	Ratio for	Site Area to	Exposure	Total Conc.	Fish Tissue	Proportion	Ingestion	Proportion	Conc.	Ingestion	Proportio			
	Hazard	Hazard	Benchmark	Benchmark	Exposure Dose	Time in	Forage Area	Dose	in Food	Concentration	Fish	Rate	of	in Water	Rate	of			
Contaminant	Index	Index	Dose mg/kg/d	Dose mg/kg/d	mg/kg/day	Site Area	Ratio	mo/ko/day	mo/kg wet	mg/kg wet	In Diet	ko/ko/day	Dose	mo/l	Vkg/day	Dose			
2,4-D	Bench NA	Bench NA	NA	NA NA	0.00E+00	1	1 1	0.00E+00	0		10	0.12	0	1,1,1	0.037	0			
Dicamba	Bench NA	Bench NA	NA.	NA	2.28E-04	1	 	2 28E-04	0.0019	0.0019	1.0	0.12	1.0	· — —	0.037	0			
Dichloroprop	Bench NA	Bench NA	NA.	NA.	7.92E-04	1	1	7.92E-04	0.0066	0.0068	1.0	0 12	1.0	t	0.037	ŏ			
MCPA	Bench NA	Bench NA	NA.	NA NA	2.16E-01	1	1 -	2.16E-01	1.8	1.8	1.0	0.12	1.0		0.037	- 0			
MCPP	Bench NA	Bench NA	NA .	NA	0 00E+00	1	1	0.00E+00	0	1	1.0	0.12	0		0.037	0			
Aluminum, Total	4.E-02	Bench NA	109.7	NA	4 09E+00	1	1	4.09E+00	33	33	10	0.12	0.97	3.4	0.037	0.031			
Antimony	Bench NA	Bench NA	NA	NA	0.00E+00	1	1	0.00E+00	0	-	1.0	0.12	0		0.037	0.007			
Arsenic, Total	1.E-04	4.E-05	5.14	12.84	5.55E-04	1	1	5 55E-04	0		1.0	0.12	0	0.015	0.037	1.0			
Barium, Total	6.E-04	3.E-04	20.8	41.7	1.18E-02	1	1	1.18E-02	0		10	0.12	0	0 32	0.037	1.0			
Cadmium, Total	0.E+00	0.E+00	1.45	20	0.00E+00	1	1	0.00E+00	Ö	<u> </u>	1.0	0.12	0		0.037	0			
Chromium, Total	1.E-01	2.E-02	1	5	1.12E-01	1	1	1.12E-01	0.93	0.93	1.0	0.12	1.0	0.0041	0.037	0.0014			
Copper, Total	2.E-03	2.E-03	47	61.7	1.07E-01	1	1	1.07E-01	0.89	0.89	1.0	0.12	1.0	0.0074	0.037	0.0026			
Iron	Bench NA	Bench NA	NA NA	NA NA	3.22E-01	1	1 1	3.22E-01	0	J	1.0	0.12	0	8.7	0.037	1.0			
Lead, Total	3.E-02	3.E-03	1.13	11.3	3.07E-02	1	1	3.07E-02	0.25	0.25	10	0.12	0.98	0.020	0.037	0.024			
Manganese	6.E-05	Bench NA	977	NA NA	6.29E-02	1	1	6.29E-02	0		1.0	0.12	0	1.7	0.037	1.0			
Mercury	6.E+00	5.E-01	0.0064	0.084	3.12E-02	1	[i	3.12E-02	0.26	0.26	1.0	0.12	1.0		0.037	0			
Molybdenum	4.E-05	4.E-06	3.5	35.3	1.48E-04	1	1"	1.48E-04	0		1.0	0.12	0	0.0040	0.037	1.0			
Nickel, Total	7.E-06	5.E-06	77.4	107	5.55E-04	1	1	5.55E-04	. 0	Γ	1.0	0.12	0	0.015	0.037	1.0			
Silver	Bench NA	Bench NA	NA .	NA	0.00E+00	1	1	0.00E+00	0	T	1.0	0.12	0		0.037	0			
Zinc, Total	2.E-01	2.E-02	14.5	131	2.64E+00	1	1	2.64E+00	22	22	1.0	0.12	1.0	0.048	0.037	0.00067			
Total PCBs	2.E-01	2.E-02	0.18	1.8	3.84E-02	1	1	3.84E-02	0.32	0.32	1.0	0.12	1.0		0.037	0			
Total DDT	1.E+00	1.E-01	0.0028	0.028	3.48E-03	Į.	1	3.48E-03	0.029	0.029	1.0	0.12	1.0		0.037	0			
Aldrin	Bench NA	Bench NA	NA	NA	0.00E+00	1	1 1	0.00E+00	0		1.0	0.12	0		0.037	0			
Alpha Chlordane	7.E-04	1.E-04	2.14	10.7	1.44E-03	1	1	1.44E-03	0.012	0.012	1.0	0.12	1.0		0.037	0			
delta-BHC	1.E-07	4.E-08	0.56	2.25	8.14E-08	1	1	8.14E-08	0	L	1.0	0.12	0	2.2E-06	0.037	1.0			
Dieldrin	5.E-07	Bench NA	0.077	NA.	3.70E-08	1	1	3.70E-08	0		1.0	0.12	0	0.000001	0.037	1.0			
Endosulfan I	9.E-09	Bench NA	10	NA.	8.88E-08	. 1	1	6.88E-08	0		1.0	0.12	0	2.4E-06	0.037	1.0			
Endosulfan II	0.E+00	Bench NA	10	NA NA	0.00E+00	1	1	0.00E+00	0		1.0	0.12	0		0.037	0			
Endosulfan sulfate	1.E-08	Bench NA	10	NA	1.18E-07	1	11	1.18E-07	0	1	1.0	0.12	0	3.2E-06	0.037	1.0			
Endrin aldehyde	1.E-05	1.E-06	0.01	0.1	1.18E-07	1	1	1.18E-07	0		1.0	0.12	0	3.2E-08	0.037	10			
Endrin ketone	1.E-05	1.E-06	0.01	0.1	9.99E-08	1	1	9 99E-08	0		10	0.12	0	2.7E-06	0.037	1.0			
Gamma Chlordane	1.E-03	2.E-04	2.14	10.7	2 28E-03	1	1	2.28E-03	0.019	0.019	1.0	0.12	1.0	L	0.037	0			
gamma-BHC (Lindane)	7.E-08	7.E-09	2	20	1.41E-07	1	11	1.41E-07	.0	 	1.0	0.12	0	3.8E-06	0.037	1.0			
Heptachlor	Bench NA	Bench NA	NA NA	NA NA	3.36E-04		1	3.36E-04	0 0028	0.0028	1.0	0 12	1.0	2.9E-08	0.037	0 00032			
Heptachlor epoxide	Bench NA	Bench NA	NA .	NA	3.55E-08	1	11	3.55E-08	0	 	10	0 12	0	9.6E-07	0.037	1.0			
Methoxychlor	Bench NA	Bench NA	NA NA	NA	0.00E+00	1	11	0.00E+00	0	 	1.0	0.12	0		0.037	0			
Total PAHs	0.E+00	0.E+00	40	400	0.00E+00	1	1	0.00E+00	. 0	 	1.0	0.12	0		0.037	0			
bis(2-ethythexyf)phthala		Bench NA	1.1	NA .	1.16E-02	<u> </u>	1	1.16E-02	0.097	0.097	1.0	0.12	1.0	ļ	0.037	0			
Di-n-butylphthalate	3.E-02	3.E-03	0.11	1.1	3.84E-03	1	1 1	3.84E-03	0.032	0.032	1.0	0.12	1.0		0.037	0			
Diethylphthalate	Bench NA	Bench NA	NA	NA NA	2.18E-03	1	. 1	2.16E-03	0.018	0.018	1.0	0.12	1.0		0.037	0			
Dioxin - TEQ	1.E-01	1.E-02	0.000014	0.00014	1.85E-06	1	11	1.85E-06	1.5E-05	1.5E-05	10	0.12	1.0	4.2E-10	0.037	8.5E-06			

Notes: NA = Not available/applicable Bench NA = Benchmark not available

Food Chain Model Components:
Hazard Index Estimate = <u>[Food Dosel + ISediment Oosel + IDrinking Water Dosel</u>
Toxicological Benchmark